CNS Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach an der Riss, Germany.
MRC Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, University of Dundee, Dundee DD1 5EH, UK.
Neuroscience. 2020 Nov 10;448:234-254. doi: 10.1016/j.neuroscience.2020.08.028. Epub 2020 Sep 3.
Both rare, high risk, loss-of-function mutations and common, low risk, genetic variants in the CUL3 gene are strongly associated with neuropsychiatric disorders. Network analyses of neuropsychiatric risk genes have shown high CUL3 expression in the prenatal human brain and an enrichment in neural precursor cells (NPCs) and cortical neurons. The role of CUL3 in human neurodevelopment however, is poorly understood. In the present study, we used CRISPR/Cas9 nickase to knockout CUL3 in human induced pluripotent stem cells (iPSCs). iPSCs were subsequently differentiated into cortical glutamatergic neurons using two different protocols and tested for structural/functional alterations. Immunocytochemical analysis and transcriptomic profiling revealed that pluripotency of heterozygous CUL3 knockout (KO) iPSCs remained unchanged compared to isogenic control iPSCs. Following small molecule-mediated differentiation into cortical glutamatergic neurons however, we detected a significant delay in transition from proliferating radial glia cells/NPCs to postmitotic neurons in CUL3 KO cultures. Notably, direct neural conversion of CUL3 KO iPSCs by lentiviral expression of Neurogenin-2 massively attenuated the neurodevelopmental delay. However, both optogenetic and electrical stimulation of induced neurons revealed decreased excitability in Cullin-3 deficient cultures, while basal synaptic transmission remained unchanged. Analysis of target gene expression pointed to alterations in FGF signaling in CUL3 KO NPCs, which is required for NPC proliferation and self-renewal, while RhoA and Notch signaling appeared unaffected. Our data provide first evidence for a major role of Cullin-3 in neuronal differentiation, and for neurodevelopmental deficits underlying neuropsychiatric disorders associated with CUL3 mutations.
CUL3 基因的罕见、高风险、功能丧失突变和常见、低风险的遗传变异与神经精神疾病密切相关。神经精神疾病风险基因的网络分析表明,CUL3 在产前人类大脑中的表达水平较高,并且在神经前体细胞(NPC)和皮质神经元中富集。然而,CUL3 在人类神经发育中的作用知之甚少。在本研究中,我们使用 CRISPR/Cas9 切口酶在人诱导多能干细胞(iPSC)中敲除 CUL3。随后,使用两种不同的方案将 iPSC 分化为皮质谷氨酸能神经元,并测试其结构/功能改变。免疫细胞化学分析和转录组谱分析显示,杂合型 CUL3 敲除(KO)iPSC 的多能性与同基因对照 iPSC 相比没有变化。然而,在用小分子介导分化为皮质谷氨酸能神经元后,我们在 CUL3 KO 培养物中检测到从增殖的放射状胶质细胞/NPC 向有丝分裂后神经元的过渡明显延迟。值得注意的是,通过慢病毒表达神经生成素-2 对 CUL3 KO iPSC 进行直接神经转化,极大地减弱了神经发育延迟。然而,光遗传学和电刺激诱导神经元显示出 Cullin-3 缺乏培养物中的兴奋性降低,而基础突触传递保持不变。靶基因表达分析表明,CUL3 KO NPC 中的 FGF 信号发生改变,这对于 NPC 的增殖和自我更新是必需的,而 RhoA 和 Notch 信号似乎不受影响。我们的数据首次提供了 Cullin-3 在神经元分化中起主要作用的证据,以及与 CUL3 突变相关的神经精神疾病的神经发育缺陷的证据。