Department of Psychiatry, University of California San Diego, La Jolla, CA, USA.
Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA.
Mol Psychiatry. 2021 Jul;26(7):3586-3613. doi: 10.1038/s41380-021-01052-x. Epub 2021 Mar 16.
E3-ubiquitin ligase Cullin3 (Cul3) is a high confidence risk gene for autism spectrum disorder (ASD) and developmental delay (DD). To investigate how Cul3 mutations impact brain development, we generated a haploinsufficient Cul3 mouse model using CRISPR/Cas9 genome engineering. Cul3 mutant mice exhibited social and cognitive deficits and hyperactive behavior. Brain MRI found decreased volume of cortical regions and changes in many other brain regions of Cul3 mutant mice starting from early postnatal development. Spatiotemporal transcriptomic and proteomic profiling of embryonic, early postnatal and adult brain implicated neurogenesis and cytoskeletal defects as key drivers of Cul3 functional impact. Specifically, dendritic growth, filamentous actin puncta, and spontaneous network activity were reduced in Cul3 mutant mice. Inhibition of small GTPase RhoA, a molecular substrate of Cul3 ligase, rescued dendrite length and network activity phenotypes. Our study identified defects in neuronal cytoskeleton and Rho signaling as the primary targets of Cul3 mutation during brain development.
E3 泛素连接酶 Cullin3(Cul3)是自闭症谱系障碍(ASD)和发育迟缓(DD)的高可信度风险基因。为了研究 Cul3 突变如何影响大脑发育,我们使用 CRISPR/Cas9 基因组工程生成了 Cul3 杂合不足的小鼠模型。Cul3 突变小鼠表现出社交和认知缺陷以及多动行为。脑 MRI 发现,从早期产后发育开始,Cul3 突变小鼠的皮质区域体积减小,许多其他脑区发生变化。胚胎期、早期产后和成年期大脑的时空转录组学和蛋白质组学分析表明,神经发生和细胞骨架缺陷是 Cul3 功能影响的关键驱动因素。具体而言,Cul3 突变小鼠的树突生长、丝状肌动蛋白斑点和自发网络活动减少。抑制小分子 GTPase RhoA(Cul3 连接酶的分子底物)可挽救树突长度和网络活动表型。我们的研究确定了神经元细胞骨架和 Rho 信号在大脑发育过程中 Cul3 突变的主要靶点。