Suppr超能文献

事件相关电位的分解:基于回归的波形估计对潜在成分的建模。

Splitting event-related potentials: Modeling latent components using regression-based waveform estimation.

机构信息

Department of Language Science and Technology, Saarland University, Saarbrücken, Germany.

出版信息

Eur J Neurosci. 2021 Feb;53(4):974-995. doi: 10.1111/ejn.14961. Epub 2020 Sep 19.

Abstract

Event-related potentials (ERPs) provide a multidimensional and real-time window into neurocognitive processing. The typical Waveform-based Component Structure (WCS) approach to ERPs assesses the modulation pattern of components-systematic, reoccurring voltage fluctuations reflecting specific computational operations-by looking at mean amplitude in predetermined time-windows. This WCS approach, however, often leads to inconsistent results within as well as across studies. It has been argued that at least some inconsistencies may be reconciled by considering spatiotemporal overlap between components; that is, components may overlap in both space and time, and given their additive nature, this means that the WCS may fail to accurately represent its underlying latent component structure (LCS). We employ regression-based ERP (rERP) estimation to extend traditional approaches with an additional layer of analysis, which enables the explicit modeling of the LCS underlying WCS. To demonstrate its utility, we incrementally derive an rERP analysis of a recent study on language comprehension with seemingly inconsistent WCS-derived results. Analysis of the resultant regression models allows one to derive an explanation for the WCS in terms of how relevant regression predictors combine in space and time, and crucially, how individual predictors may be mapped onto unique components in LCS, revealing how these spatiotemporally overlap in the WCS. We conclude that rERP estimation allows for investigating how scalp-recorded voltages derive from the spatiotemporal combination of experimentally manipulated factors. Moreover, when factors can be uniquely mapped onto components, rERPs may offer explanations for seemingly inconsistent ERP waveforms at the level of their underlying latent component structure.

摘要

事件相关电位(ERPs)为神经认知处理提供了多维和实时的窗口。传统的基于波形的成分结构(WCS)方法评估 ERP 的调制模式,通过观察预定时间窗口中的平均振幅来评估成分的系统、重复的电压波动,反映特定的计算操作。然而,这种 WCS 方法经常导致在同一研究内以及跨研究之间的结果不一致。有人认为,通过考虑成分之间的时空重叠,可以至少部分地协调一些不一致之处;也就是说,成分可能在空间和时间上重叠,并且由于它们是相加的,这意味着 WCS 可能无法准确地表示其潜在的成分结构(LCS)。我们使用基于回归的 ERP(rERP)估计来扩展传统方法,增加一个额外的分析层,从而能够明确地对 WCS 下的 LCS 进行建模。为了证明其效用,我们逐步推导出最近一项关于语言理解的研究的 rERP 分析,该研究的 WCS 结果似乎不一致。对所得回归模型的分析允许根据相关回归预测因子在空间和时间上的组合方式以及关键的是,个体预测因子如何映射到 LCS 中的独特成分,来解释 WCS,揭示它们在 WCS 中的时空重叠方式。我们得出结论,rERP 估计允许研究头皮记录的电压如何源自实验操作因素的时空组合。此外,当因素可以被唯一地映射到成分上时,rERPs 可能会在其潜在的成分结构层面上为看似不一致的 ERP 波形提供解释。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验