Suppr超能文献

通过掺杂锰基催化剂实现低温下氢化镁的氢脱附/吸收

Realizing Hydrogen De/Absorption Under Low Temperature for MgH by Doping Mn-Based Catalysts.

作者信息

Sun Ze, Zhang Liuting, Yan Nianhua, Zheng Jiaguang, Bian Ting, Yang Zongming, Su Shichuan

机构信息

College of Energy and Power, Jiangsu University of Science and Technology, Zhenjiang 212003, China.

出版信息

Nanomaterials (Basel). 2020 Sep 3;10(9):1745. doi: 10.3390/nano10091745.

Abstract

Magnesium hydride (MgH) has been considered as a potential material for storing hydrogen, but its practical application is still hindered by the kinetic and thermodynamic obstacles. Herein, Mn-based catalysts (MnCl and Mn) are adopted and doped into MgH to improve its hydrogen storage performance. The onset dehydrogenation temperatures of MnCl and submicron-Mn-doped MgH are reduced to 225 °C and 183 °C, while the un-doped MgH starts to release hydrogen at 315 °C. Further study reveals that 10 wt% of Mn is the better doping amount and the MgH + 10 wt% submicron-Mn composite can quickly release 6.6 wt% hydrogen in 8 min at 300 °C. For hydrogenation, the completely dehydrogenated composite starts to absorb hydrogen even at room temperature and almost 3.0 wt% H can be rehydrogenated in 30 min under 3 MPa hydrogen at 100 °C. Additionally, the activation energy of hydrogenation reaction for the modified MgH composite significantly decreases to 17.3 ± 0.4 kJ/mol, which is much lower than that of the primitive MgH. Furthermore, the submicron-Mn-doped sample presents favorable cycling stability in 20 cycles, providing a good reference for designing and constructing efficient solid-state hydrogen storage systems for future application.

摘要

氢化镁(MgH)被认为是一种潜在的储氢材料,但其实际应用仍受到动力学和热力学障碍的阻碍。在此,采用锰基催化剂(MnCl和Mn)并将其掺杂到MgH中以改善其储氢性能。MnCl和亚微米级Mn掺杂的MgH的起始脱氢温度分别降至225℃和183℃,而未掺杂的MgH在315℃开始释放氢气。进一步研究表明,10 wt%是较好的掺杂量,MgH + 10 wt%亚微米级Mn复合材料在300℃下8分钟内可快速释放6.6 wt%的氢气。对于氢化反应,完全脱氢的复合材料即使在室温下也开始吸收氢气,在100℃、3 MPa氢气压力下30分钟内几乎可再氢化3.0 wt%的氢。此外,改性MgH复合材料的氢化反应活化能显著降低至17.3±0.4 kJ/mol,远低于原始MgH的活化能。此外,亚微米级Mn掺杂样品在20次循环中表现出良好的循环稳定性,为未来设计和构建高效固态储氢系统提供了良好的参考。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2be/7560042/ae0b1e792b50/nanomaterials-10-01745-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验