McAdams Tom A, Rijsdijk Fruhling V, Zavos Helena M S, Pingault Jean-Baptiste
Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, United Kingdom.
Promenta Research Centre, University of Oslo, Oslo 0373, Norway.
Cold Spring Harb Perspect Med. 2021 Jun 1;11(6):a039552. doi: 10.1101/cshperspect.a039552.
In this review, we discuss how samples comprising monozygotic and dizygotic twin pairs can be used for the purpose of strengthening causal inference by controlling for shared influences on exposure and outcome. We begin by briefly introducing how twin data can be used to inform the biometric decomposition of population variance into genetic, shared environmental, and nonshared environmental influences. We then discuss how extensions to this model can be used to explore whether associations between exposure and outcome survive correction for shared etiology (common causes). We review several analytical approaches that can be applied to twin data for this purpose. These include multivariate structural equation models, cotwin control methods, direction of causation models (cross-sectional and longitudinal), and extended family designs used to assess intergenerational associations. We conclude by highlighting some of the limitations and considerations that researchers should be aware of when using twin data for the purposes of interrogating causal hypotheses.
在本综述中,我们讨论了如何通过控制对暴露和结局的共同影响,将由同卵双胞胎和异卵双胞胎对组成的样本用于加强因果推断。我们首先简要介绍如何利用双胞胎数据将总体方差进行生物统计学分解,分为遗传、共享环境和非共享环境影响。然后,我们讨论该模型的扩展如何用于探索暴露与结局之间的关联在对共享病因(共同原因)进行校正后是否依然存在。我们回顾了几种可用于此目的的双胞胎数据的分析方法。这些方法包括多变量结构方程模型、同卵双胞胎对照方法、因果关系模型(横断面和纵向)以及用于评估代际关联的扩展家系设计。我们通过强调研究人员在使用双胞胎数据来探究因果假设时应注意的一些局限性和注意事项来结束本文。