Zhang Ruohan, Saran Akanksha, Liu Bo, Zhu Yifeng, Guo Sihang, Niekum Scott, Ballard Dana, Hayhoe Mary
The University of Texas at Austin.
IJCAI (U S). 2020 Jul;2020:4951-4958. doi: 10.24963/ijcai.2020/689.
Human gaze reveals a wealth of information about internal cognitive state. Thus, gaze-related research has significantly increased in computer vision, natural language processing, decision learning, and robotics in recent years. We provide a high-level overview of the research efforts in these fields, including collecting human gaze data sets, modeling gaze behaviors, and utilizing gaze information in various applications, with the goal of enhancing communication between these research areas. We discuss future challenges and potential applications that work towards a common goal of human-centered artificial intelligence.
人类的目光揭示了大量有关内部认知状态的信息。因此,近年来,与目光相关的研究在计算机视觉、自然语言处理、决策学习和机器人技术等领域显著增加。我们对这些领域的研究工作进行了高层次概述,包括收集人类目光数据集、对目光行为进行建模以及在各种应用中利用目光信息,目的是加强这些研究领域之间的交流。我们讨论了朝着以人类为中心的人工智能这一共同目标发展的未来挑战和潜在应用。