Suppr超能文献

DeepFix:一种用于预测人眼注视点的全卷积神经网络。

DeepFix: A Fully Convolutional Neural Network for Predicting Human Eye Fixations.

出版信息

IEEE Trans Image Process. 2017 Sep;26(9):4446-4456. doi: 10.1109/TIP.2017.2710620.

Abstract

Understanding and predicting the human visual attention mechanism is an active area of research in the fields of neuroscience and computer vision. In this paper, we propose DeepFix, a fully convolutional neural network, which models the bottom-up mechanism of visual attention via saliency prediction. Unlike classical works, which characterize the saliency map using various hand-crafted features, our model automatically learns features in a hierarchical fashion and predicts the saliency map in an end-to-end manner. DeepFix is designed to capture semantics at multiple scales while taking global context into account, by using network layers with very large receptive fields. Generally, fully convolutional nets are spatially invariant-this prevents them from modeling location-dependent patterns (e.g., centre-bias). Our network handles this by incorporating a novel location-biased convolutional layer. We evaluate our model on multiple challenging saliency data sets and show that it achieves the state-of-the-art results.

摘要

理解和预测人类视觉注意机制是神经科学和计算机视觉领域的一个活跃研究领域。在本文中,我们提出了 DeepFix,这是一个完全卷积神经网络,通过显着性预测来模拟视觉注意的自下而上机制。与使用各种手工制作的特征来描述显着性图的经典作品不同,我们的模型以分层的方式自动学习特征,并以端到端的方式预测显着性图。DeepFix 通过使用具有非常大感受野的网络层来捕获多个尺度的语义并考虑全局上下文,从而设计为捕获语义。通常,完全卷积网络是空间不变的 - 这阻止它们对位置相关的模式进行建模(例如,中心偏差)。我们的网络通过引入新颖的位置偏向卷积层来处理这个问题。我们在多个具有挑战性的显着性数据集上评估我们的模型,并表明它取得了最先进的结果。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验