College of Plant Science and Technology, Beijing University of Agriculture, 7 Beinong Road, Changping District, Beijing, 102206, China.
Institute of Crop Science, The National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China.
Plant Mol Biol. 2020 Dec;104(6):583-595. doi: 10.1007/s11103-020-01062-3. Epub 2020 Sep 8.
Mapping QTL for stem-related traits using RIL population with ultra-high density bin map can better dissect pleiotropic QTL controlling stem architecture that can provide valuable information for maize genetic improvement. The maize stem is one of the most important parts of the plant and is also a component of many agronomic traits in maize. This study aimed to advance our understanding of the genetic mechanisms underlying maize stem traits. A recombinant inbred line (RIL) population derived from a cross between Ye478 and Qi319 was used to identify quantitative trait loci (QTL) controlling stem height (SH), ear height (EH), stem node number (SN), ear node (EN), and stem diameter (SD), and two derived traits (ear height coefficient (EHc) and ear node coefficient (ENc)). Using an available ultra-high density bin map, 46 putative QTL for these traits were detected on chromosomes 1, 3, 4, 5, 6, 7, 8, and 10. Individual QTL explained 3.5-17.7% of the phenotypic variance in different environments. Two QTL for SH, three for EH, two for EHc, one for SN, one for EN, and one for SD were detected in more than one environment. QTL with pleiotropic effects or multiple linked QTL were also identified on chromosomes 1, 3, 4, 6, 8, and 10, which are potential target regions for fine-mapping and marker-assisted selection in maize breeding programs. Further, we discussed segregation of bin markers (mk1630 and mk4452) associated with EHc QTL in the RIL population. We had identified two putative WRKY DNA-binding domain proteins, AC209050.3_FG003 and GRMZM5G851490, and a putative auxin response factor, GRMZM2G437460, which might be involved in regulating plant growth and development, as candidate genes for the control of stem architecture.
利用超高密度 bin 图谱的 RIL 群体对与茎相关的性状进行 QTL 作图,可以更好地剖析控制茎结构的多效性 QTL,为玉米遗传改良提供有价值的信息。玉米茎是植物最重要的部分之一,也是玉米许多农艺性状的组成部分。本研究旨在深入了解玉米茎性状的遗传机制。利用 Ye478 和 Qi319 杂交衍生的重组自交系 (RIL) 群体,鉴定控制茎高 (SH)、穗位高 (EH)、茎节数 (SN)、穗位 (EN)和茎直径 (SD) 的数量性状基因座 (QTL),以及两个衍生性状(穗位高系数 (EHc)和穗位系数 (ENc))。利用现有的超高密度 bin 图谱,在第 1、3、4、5、6、7、8 和 10 号染色体上检测到 46 个与这些性状相关的假定 QTL。单个 QTL 解释了不同环境下表型方差的 3.5-17.7%。在一个以上环境中检测到 2 个 SH、3 个 EH、2 个 EHc、1 个 SN、1 个 EN 和 1 个 SD 的 QTL。还在第 1、3、4、6、8 和 10 号染色体上鉴定到具有多效性效应或多个连锁 QTL 的 QTL,这些 QTL 是玉米育种计划中精细定位和标记辅助选择的潜在目标区域。此外,我们还讨论了与 EHc QTL 相关的 bin 标记 (mk1630 和 mk4452) 在 RIL 群体中的分离。我们已经鉴定出两个假定的 WRKY DNA 结合域蛋白,AC209050.3_FG003 和 GRMZM5G851490,以及一个假定的生长素反应因子,GRMZM2G437460,它们可能参与调节植物生长发育,作为控制茎结构的候选基因。