文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

上位性和多效性引起的植物育种变异。

Epistasis and pleiotropy-induced variation for plant breeding.

机构信息

Independent Researcher, Hyderabad, India.

Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.

出版信息

Plant Biotechnol J. 2024 Oct;22(10):2788-2807. doi: 10.1111/pbi.14405. Epub 2024 Jun 14.


DOI:10.1111/pbi.14405
PMID:38875130
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11536456/
Abstract

Epistasis refers to nonallelic interaction between genes that cause bias in estimates of genetic parameters for a phenotype with interactions of two or more genes affecting the same trait. Partitioning of epistatic effects allows true estimation of the genetic parameters affecting phenotypes. Multigenic variation plays a central role in the evolution of complex characteristics, among which pleiotropy, where a single gene affects several phenotypic characters, has a large influence. While pleiotropic interactions provide functional specificity, they increase the challenge of gene discovery and functional analysis. Overcoming pleiotropy-based phenotypic trade-offs offers potential for assisting breeding for complex traits. Modelling higher order nonallelic epistatic interaction, pleiotropy and non-pleiotropy-induced variation, and genotype × environment interaction in genomic selection may provide new paths to increase the productivity and stress tolerance for next generation of crop cultivars. Advances in statistical models, software and algorithm developments, and genomic research have facilitated dissecting the nature and extent of pleiotropy and epistasis. We overview emerging approaches to exploit positive (and avoid negative) epistatic and pleiotropic interactions in a plant breeding context, including developing avenues of artificial intelligence, novel exploitation of large-scale genomics and phenomics data, and involvement of genes with minor effects to analyse epistatic interactions and pleiotropic quantitative trait loci, including missing heritability.

摘要

上位性是指基因间非等位基因的相互作用,导致对具有两个或更多基因相互作用影响同一性状的表型遗传参数的估计出现偏差。上位性效应的划分允许对影响表型的遗传参数进行真实估计。多基因变异在复杂特征的进化中起着核心作用,其中,单基因影响几个表型特征的多效性具有很大的影响。虽然多效性相互作用提供了功能特异性,但它们增加了基因发现和功能分析的挑战。克服基于多效性的表型权衡为复杂性状的选育提供了潜力。在基因组选择中模拟更高阶的非等位上位性相互作用、多效性和非多效性诱导的变异以及基因型×环境相互作用,可能为提高下一代作物品种的生产力和抗胁迫能力提供新途径。统计模型、软件和算法的发展以及基因组研究的进展,促进了对多效性和上位性本质和程度的剖析。我们概述了在植物育种背景下利用上位性和多效性的新方法,包括开发人工智能途径、大规模基因组学和表型组学数据的新利用,以及涉及微效基因来分析上位性相互作用和多效性数量性状位点,包括遗传缺失。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/49e2/11536456/e036ab2dfc4c/PBI-22-2788-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/49e2/11536456/1fa4aab76f16/PBI-22-2788-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/49e2/11536456/e036ab2dfc4c/PBI-22-2788-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/49e2/11536456/1fa4aab76f16/PBI-22-2788-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/49e2/11536456/e036ab2dfc4c/PBI-22-2788-g001.jpg

相似文献

[1]
Epistasis and pleiotropy-induced variation for plant breeding.

Plant Biotechnol J. 2024-10

[2]
Evolution of pleiotropy: epistatic interaction pattern supports a mechanistic model underlying variation in genotype-phenotype map.

J Exp Zool B Mol Dev Evol. 2011-4-1

[3]
Epistatic Networks Jointly Influence Phenotypes Related to Metabolic Disease and Gene Expression in Diversity Outbred Mice.

Genetics. 2017-6

[4]
Epistatic pleiotropy and the genetic architecture of covariation within early and late-developing skull trait complexes in mice.

Genetics. 2005-10

[5]
The genetic architecture of domestication in the chicken: effects of pleiotropy and linkage.

Mol Ecol. 2010-10-29

[6]
The Combined Analysis of Pleiotropy and Epistasis (CAPE).

Methods Mol Biol. 2021

[7]
Epistasis and Pleiotropy Affect the Modularity of the Genotype-Phenotype Map of Cross-Resistance in HIV-1.

Mol Biol Evol. 2016-12

[8]
New Horizons for Dissecting Epistasis in Crop Quantitative Trait Variation.

Annu Rev Genet. 2020-11-23

[9]
The contribution of epistatic pleiotropy to the genetic architecture of covariation among polygenic traits in mice.

Evol Dev. 2006

[10]
A synthetic framework for modeling the genetic basis of phenotypic plasticity and its costs.

New Phytol. 2013-9-13

引用本文的文献

[1]
Learning sequence-function relationships with scalable, interpretable Gaussian processes.

bioRxiv. 2025-8-19

[2]
Genome analyses and breeding of polyploid crops.

Nat Plants. 2025-8-28

[3]
Watkins wheat landraces decode nitrogen-driven biomass trade-offs: GWAS exposes root-shoot dialectics and elite landraces for resilient agriculture.

Front Plant Sci. 2025-5-23

[4]
From text to traits: exploring the role of large language models in plant breeding.

Front Plant Sci. 2025-5-14

[5]
Advances in multi-trait genomic prediction approaches: classification, comparative analysis, and perspectives.

Brief Bioinform. 2025-5-1

[6]
Genome-wide exploration of soybean domestication traits: integrating association mapping and SNP × SNP interaction analyses.

Plant Mol Biol. 2025-4-3

[7]
Inference and visualization of complex genotype-phenotype maps with .

bioRxiv. 2025-3-15

[8]
Historic rewiring of grass flowering time pathways and implications for crop improvement under climate change.

New Phytol. 2025-3

[9]
Genome-wide analysis of flavonoid biosynthetic genes in Musaceae (, , and species) reveals amplification of flavonoid 3',5'-hydroxylase.

AoB Plants. 2024-9-10

本文引用的文献

[1]
Patterns and evolutionary consequences of pleiotropy.

Annu Rev Ecol Evol Syst. 2023-11

[2]
Innovative computational tools provide new insights into the polyploid wheat genome.

aBIOTECH. 2024-2-7

[3]
Next-Gen GWAS: full 2D epistatic interaction maps retrieve part of missing heritability and improve phenotypic prediction.

Genome Biol. 2024-3-25

[4]
Identification of pleiotropic loci mediating structural and non-structural carbohydrate accumulation within the sorghum bioenergy association panel using high-throughput markers.

Front Plant Sci. 2024-2-28

[5]
Physical seed dormancy in pea is genetically separable from seed coat thickness and roughness.

Front Plant Sci. 2024-2-27

[6]
Genomic selection in plant breeding: Key factors shaping two decades of progress.

Mol Plant. 2024-4-1

[7]
Linkage mapping and genomic prediction of grain quality traits in tropical maize ( L.).

Front Genet. 2024-2-21

[8]
Revisiting growth-defence trade-offs and breeding strategies in crops.

Plant Biotechnol J. 2024-5

[9]
An integrated QTL mapping and transcriptome sequencing provides further molecular insights and candidate genes for stem strength in rapeseed (Brassica napus L.).

Theor Appl Genet. 2024-1-31

[10]
Allelic combinations of Hd1, Hd16, and Ghd7 exhibit pleiotropic effects on agronomic traits in rice.

G3 (Bethesda). 2024-3-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索