Independent Researcher, Hyderabad, India.
Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.
Plant Biotechnol J. 2024 Oct;22(10):2788-2807. doi: 10.1111/pbi.14405. Epub 2024 Jun 14.
Epistasis refers to nonallelic interaction between genes that cause bias in estimates of genetic parameters for a phenotype with interactions of two or more genes affecting the same trait. Partitioning of epistatic effects allows true estimation of the genetic parameters affecting phenotypes. Multigenic variation plays a central role in the evolution of complex characteristics, among which pleiotropy, where a single gene affects several phenotypic characters, has a large influence. While pleiotropic interactions provide functional specificity, they increase the challenge of gene discovery and functional analysis. Overcoming pleiotropy-based phenotypic trade-offs offers potential for assisting breeding for complex traits. Modelling higher order nonallelic epistatic interaction, pleiotropy and non-pleiotropy-induced variation, and genotype × environment interaction in genomic selection may provide new paths to increase the productivity and stress tolerance for next generation of crop cultivars. Advances in statistical models, software and algorithm developments, and genomic research have facilitated dissecting the nature and extent of pleiotropy and epistasis. We overview emerging approaches to exploit positive (and avoid negative) epistatic and pleiotropic interactions in a plant breeding context, including developing avenues of artificial intelligence, novel exploitation of large-scale genomics and phenomics data, and involvement of genes with minor effects to analyse epistatic interactions and pleiotropic quantitative trait loci, including missing heritability.
上位性是指基因间非等位基因的相互作用,导致对具有两个或更多基因相互作用影响同一性状的表型遗传参数的估计出现偏差。上位性效应的划分允许对影响表型的遗传参数进行真实估计。多基因变异在复杂特征的进化中起着核心作用,其中,单基因影响几个表型特征的多效性具有很大的影响。虽然多效性相互作用提供了功能特异性,但它们增加了基因发现和功能分析的挑战。克服基于多效性的表型权衡为复杂性状的选育提供了潜力。在基因组选择中模拟更高阶的非等位上位性相互作用、多效性和非多效性诱导的变异以及基因型×环境相互作用,可能为提高下一代作物品种的生产力和抗胁迫能力提供新途径。统计模型、软件和算法的发展以及基因组研究的进展,促进了对多效性和上位性本质和程度的剖析。我们概述了在植物育种背景下利用上位性和多效性的新方法,包括开发人工智能途径、大规模基因组学和表型组学数据的新利用,以及涉及微效基因来分析上位性相互作用和多效性数量性状位点,包括遗传缺失。
Plant Biotechnol J. 2024-10
J Exp Zool B Mol Dev Evol. 2011-4-1
Methods Mol Biol. 2021
Annu Rev Genet. 2020-11-23
Nat Plants. 2025-8-28
Front Plant Sci. 2025-5-14
bioRxiv. 2025-3-15
Annu Rev Ecol Evol Syst. 2023-11
Front Plant Sci. 2024-2-27
Front Genet. 2024-2-21
Plant Biotechnol J. 2024-5