Suppr超能文献

介孔TiO光电极的电荷转移还原掺杂——电解质组成和薄膜形态的影响

Charge Transfer Reductive Doping of Mesoporous TiO Photoelectrodes - Impact of Electrolyte Composition and Film Morphology.

作者信息

Idígoras Jesús, Anta Juan A, Berger Thomas

机构信息

Departamento de Sistemas Físicos, Químicos y Naturales, Área de Química Física, Universidad Pablo de Olavide, Ctra. Utrera, km 1, E-41013 Sevilla, Spain.

Department of Chemistry and Physics of Materials, University of Salzburg, Hellbrunnerstraße 34/III, A-5020 Salzburg, Austria.

出版信息

J Phys Chem C Nanomater Interfaces. 2016 Dec 15;120:27882-27894. doi: 10.1021/acs.jpcc.6b09926. Epub 2016 Dec 7.

Abstract

Some material properties depend not only on synthesis and processing parameters, but may furthermore significantly change during operation. This is particularly true for high surface area materials. We used a combined electrochemical and spectroscopic approach to follow the changes of the photoelectrocatalytic activity and of the electronic semiconductor properties of mesoporous TiO films upon charge transfer reductive doping. Shallow donors (i.e. electron/proton pairs) were introduced into the semiconductor by the application of an external potential or, alternatively, by band gap excitation at open circuit conditions. In the latter case the effective open circuit doping potential depends critically on electrolyte composition (e.g. the presence of electron or hole acceptors). Transient charge accumulation (electrons and protons) in nanoparticle electrodes results in a photocurrent enhancement which is attributed to the deactivation of recombination centers. In nanotube electrodes the formation of a space charge layer results in an additional decrease of charge recombination at positive potentials. Doping is transient in nanoparticle films, but turns out to be stable for nanotube arrays.

摘要

一些材料特性不仅取决于合成和加工参数,而且在运行过程中可能会发生显著变化。对于高比表面积材料而言尤其如此。我们采用电化学和光谱学相结合的方法,来跟踪介孔TiO薄膜在电荷转移还原掺杂后光催化活性和电子半导体特性的变化。通过施加外部电势,或者在开路条件下通过带隙激发,将浅施主(即电子/质子对)引入半导体。在后一种情况下,有效的开路掺杂电势严重依赖于电解质组成(例如电子或空穴受体的存在)。纳米颗粒电极中的瞬态电荷积累(电子和质子)导致光电流增强,这归因于复合中心的失活。在纳米管电极中,空间电荷层的形成导致在正电势下电荷复合的进一步减少。掺杂在纳米颗粒薄膜中是瞬态的,但对于纳米管阵列来说却是稳定的。

相似文献

1
Charge Transfer Reductive Doping of Mesoporous TiO Photoelectrodes - Impact of Electrolyte Composition and Film Morphology.
J Phys Chem C Nanomater Interfaces. 2016 Dec 15;120:27882-27894. doi: 10.1021/acs.jpcc.6b09926. Epub 2016 Dec 7.
2
Modification of Charge Trapping at Particle/Particle Interfaces by Electrochemical Hydrogen Doping of Nanocrystalline TiO.
J Am Chem Soc. 2016 Dec 14;138(49):15956-15964. doi: 10.1021/jacs.6b08636. Epub 2016 Nov 29.
3
IR-spectrophotoelectrochemical characterization of mesoporous semiconductor films.
Anal Chem. 2012 Apr 3;84(7):3053-7. doi: 10.1021/ac300098u. Epub 2012 Mar 14.
5
Reactivity of Hydrogen-Related Electron Centers in Powders, Layers, and Electrodes Consisting of Anatase TiO Nanocrystal Aggregates.
J Phys Chem C Nanomater Interfaces. 2021 Jul 1;125(25):13809-13818. doi: 10.1021/acs.jpcc.1c01580. Epub 2021 Jun 22.
6
Betavoltaic Enhancement Using Defect-Engineered TiO Nanotube Arrays through Electrochemical Reduction in Organic Electrolytes.
ACS Appl Mater Interfaces. 2018 Jul 5;10(26):22174-22181. doi: 10.1021/acsami.8b05151. Epub 2018 Jun 19.
9
Charge accumulation kinetics in multi-redox molecular catalysts immobilised on TiO.
Chem Sci. 2020 Nov 10;12(3):946-959. doi: 10.1039/d0sc04344c.
10

引用本文的文献

1
Reactivity of Hydrogen-Related Electron Centers in Powders, Layers, and Electrodes Consisting of Anatase TiO Nanocrystal Aggregates.
J Phys Chem C Nanomater Interfaces. 2021 Jul 1;125(25):13809-13818. doi: 10.1021/acs.jpcc.1c01580. Epub 2021 Jun 22.
2
Photoelectrochemical Properties of SnO Photoanodes Sensitized by Cationic Perylene-Di-Imide Aggregates for Aqueous HBr Splitting.
J Phys Chem C Nanomater Interfaces. 2020 Jan 16;124(2):1317-1329. doi: 10.1021/acs.jpcc.9b11039. Epub 2019 Dec 19.

本文引用的文献

1
Modification of Charge Trapping at Particle/Particle Interfaces by Electrochemical Hydrogen Doping of Nanocrystalline TiO.
J Am Chem Soc. 2016 Dec 14;138(49):15956-15964. doi: 10.1021/jacs.6b08636. Epub 2016 Nov 29.
2
Direct view at excess electrons in TiO2 rutile and anatase.
Phys Rev Lett. 2014 Aug 22;113(8):086402. doi: 10.1103/PhysRevLett.113.086402. Epub 2014 Aug 18.
3
One-dimensional titanium dioxide nanomaterials: nanotubes.
Chem Rev. 2014 Oct 8;114(19):9385-454. doi: 10.1021/cr500061m. Epub 2014 Aug 14.
5
Spectroscopic properties of electrochemically populated electronic states in nanostructured TiO2 films: anatase versus rutile.
Phys Chem Chem Phys. 2013 Sep 7;15(33):13790-5. doi: 10.1039/c3cp52324a. Epub 2013 Jul 16.
6
Porous titania with heavily self-doped Ti3+ for specific sensing of CO at room temperature.
Inorg Chem. 2013 May 20;52(10):5924-30. doi: 10.1021/ic400109j. Epub 2013 May 7.
7
Oxygen-deficient metal oxide nanostructures for photoelectrochemical water oxidation and other applications.
Nanoscale. 2012 Nov 7;4(21):6682-91. doi: 10.1039/c2nr32222f. Epub 2012 Oct 1.
8
Comparison of extra electrons in colloidal n-type Al(3+)-doped and photochemically reduced ZnO nanocrystals.
Chem Commun (Camb). 2012 Sep 28;48(75):9352-4. doi: 10.1039/c2cc34635d. Epub 2012 Aug 13.
9
The electrochemistry of nanostructured titanium dioxide electrodes.
Chemphyschem. 2012 Aug 27;13(12):2824-75. doi: 10.1002/cphc.201200073. Epub 2012 Jun 29.
10
Trap states in TiO2 films made of nanowires, nanotubes or nanoparticles: an electrochemical study.
Chemphyschem. 2012 Aug 27;13(12):3008-17. doi: 10.1002/cphc.201200072. Epub 2012 Jun 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验