Institut Universitari d'Electroquímica i Departament de Química Física, Universitat d'Alacant, Apartat 99, 03080 Alacant, Spain.
Chemphyschem. 2012 Aug 27;13(12):2824-75. doi: 10.1002/cphc.201200073. Epub 2012 Jun 29.
Several of the multiple applications of titanium dioxide nanomaterials are directly related to the introduction or generation of charge carriers in the oxide. Thus, electrochemistry plays a central role in the understanding of the factors that must be controlled for the optimization of the material for each application. Herein, the main conceptual tools needed to address the study of the electrochemical properties of TiO(2) nanostructured electrodes are reviewed, as well as the electrochemical methods to prepare and modify them. Particular attention is paid to the dark electrochemical response of these nanomaterials and its direct connection with the TiO(2) electronic structure, interfacial area and grain boundary density. The physical bases for the generation of currents under illumination are also presented. Emphasis is placed on the fact that the kinetics of charge-carrier transfer to solution determines the sign and value of the photocurrent. Furthermore, methods for extracting kinetic information from open-circuit potential and photocurrent measurements are briefly presented. Some aspects of the combination of electrochemical and spectroscopic measurements are also dealt with. Finally, some of the applications of TiO(2) nanostructured samples derived from their electrochemical properties are concisely reviewed. Particular attention is paid to photocatalytic processes and, to a lesser extent, to photosynthetic reactions as well as to applications related to energy from the aspects of both saving (electrochromic layers) and accumulation (batteries). The use of TiO(2) nanomaterials in solar cells is not covered, as a number of reviews have been published addressing this issue.
二氧化钛纳米材料的多种应用有几种都直接与氧化物中载流子的引入或产生有关。因此,电化学在理解为每种应用优化材料时必须控制的因素方面起着核心作用。在此,综述了用于研究 TiO(2) 纳米结构电极电化学性质的主要概念工具,以及制备和修饰它们的电化学方法。特别关注这些纳米材料的暗电化学响应及其与 TiO(2) 电子结构、比表面积和晶界密度的直接关系。还介绍了在光照下产生电流的物理基础。强调电荷载流子向溶液转移的动力学决定了光电流的符号和值。此外,还简要介绍了从开路电位和光电流测量中提取动力学信息的方法。还涉及了电化学和光谱测量相结合的一些方面。最后,简要综述了 TiO(2) 纳米结构样品从其电化学性质衍生出的一些应用。特别关注光催化过程,以及在较小程度上关注光合作用以及与节能(电致变色层)和储能(电池)相关的应用。不包括 TiO(2) 纳米材料在太阳能电池中的应用,因为已经发表了许多针对该问题的综述。