Suppr超能文献

通过对重症2019冠状病毒病患者血浆进行靶向蛋白质组分析确定的新型结局生物标志物

Novel Outcome Biomarkers Identified With Targeted Proteomic Analyses of Plasma From Critically Ill Coronavirus Disease 2019 Patients.

作者信息

Fraser Douglas D, Cepinskas Gediminas, Patterson Eric K, Slessarev Marat, Martin Claudio, Daley Mark, Patel Maitray A, Miller Michael R, O'Gorman David B, Gill Sean E, Pare Guillaume, Prassas Ioannis, Diamandis Eleftherios

机构信息

Lawson Health Research Institute, London, ON, Canada.

Pediatrics, Western University, London, ON, Canada.

出版信息

Crit Care Explor. 2020 Aug 24;2(9):e0189. doi: 10.1097/CCE.0000000000000189. eCollection 2020 Sep.

Abstract

OBJECTIVES

Coronavirus disease 2019 patients admitted to the ICU have high mortality. The host response to coronavirus disease 2019 has only been partially elucidated, and prognostic biomarkers have not been identified. We performed targeted proteomics on critically ill coronavirus disease 2019 patients to better understand their pathophysiologic mediators and to identify potential outcome markers.

DESIGN

Blood was collected at predetermined ICU days for proximity extension assays to determine the plasma concentrations of 1,161 proteins.

SETTING

Tertiary care ICU and academic laboratory.

SUBJECTS

All patients admitted to the ICU suspected of being infected with severe acute respiratory syndrome coronavirus 2, using standardized hospital screening methodologies, had blood samples collected until either testing was confirmed negative on ICU day 3 (coronavirus disease 2019 negative) or until ICU day 10 if the patient positive (coronavirus disease 2019 positive).

INTERVENTIONS

None.

MEASUREMENTS AND MAIN RESULTS

Age- and sex-matched healthy control subjects and ICU patients who were either coronavirus disease 2019 positive or coronavirus disease 2019 negative were enrolled. Cohorts were well-balanced with the exception that coronavirus disease 2019 positive patients suffered bilateral pneumonia more frequently than coronavirus disease 2019 negative patients. Mortality rate for coronavirus disease 2019 positive ICU patients was 40%. Feature selection identified the top performing proteins for identifying coronavirus disease 2019 positive ICU patients from both healthy control subjects and coronavirus disease 2019 negative ICU patients (classification accuracies 100%). The coronavirus disease 2019 proteome was dominated by interleukins and chemokines, as well as several membrane receptors linked to lymphocyte-associated microparticles and/or cell debris. Mortality was predicted for coronavirus disease 2019 positive patients based on plasma proteome profiling on both ICU day 1 (accuracy 92%) and ICU day 3 (accuracy 83%). Promising prognostic proteins were then narrowed down to six, each of which provided excellent classification performance for mortality when measured on ICU day 1 CMRF-35-like molecule, interleukin receptor-12 subunit B1, cluster of differentiation 83 [CD83], family with sequence similarity 3, insulin-like growth factor 1 receptor and opticin; area-under-the-curve =1.0; = 0.007).

CONCLUSIONS

Targeted proteomics with feature classification easily distinguished both healthy control subjects and coronavirus disease 2019 tested negative ICU patients from coronavirus disease 2019 tested positive ICU patients. Multiple proteins were identified that accurately predicted coronavirus disease 2019 tested positive patient mortality.

摘要

目的

入住重症监护病房(ICU)的2019冠状病毒病患者死亡率很高。宿主对2019冠状病毒病的反应仅得到部分阐明,且尚未确定预后生物标志物。我们对重症2019冠状病毒病患者进行了靶向蛋白质组学研究,以更好地了解其病理生理介质并确定潜在的预后标志物。

设计

在预定的ICU住院日采集血液,用于邻近延伸分析,以测定1161种蛋白质的血浆浓度。

地点

三级医疗ICU和学术实验室。

研究对象

所有入住ICU疑似感染严重急性呼吸综合征冠状病毒2的患者,采用标准化医院筛查方法,采集血样,直至在ICU第3天检测确诊为阴性(2019冠状病毒病阴性),或如果患者为阳性(2019冠状病毒病阳性)则直至ICU第10天。

干预措施

无。

测量指标及主要结果

纳入年龄和性别匹配的健康对照受试者以及2019冠状病毒病阳性或2019冠状病毒病阴性的ICU患者。各队列均衡良好,唯一例外是2019冠状病毒病阳性患者双侧肺炎的发生率高于2019冠状病毒病阴性患者。2019冠状病毒病阳性ICU患者的死亡率为40%。特征选择确定了从健康对照受试者和2019冠状病毒病阴性ICU患者中识别2019冠状病毒病阳性ICU患者的表现最佳的蛋白质(分类准确率100%)。2019冠状病毒病蛋白质组以白细胞介素和趋化因子以及几种与淋巴细胞相关微粒和/或细胞碎片相关的膜受体为主。根据ICU第1天(准确率92%)和ICU第3天(准确率83%)的血浆蛋白质组分析预测2019冠状病毒病阳性患者的死亡率。然后将有前景的预后蛋白质范围缩小至6种,在ICU第1天进行检测时,每种蛋白质对死亡率的分类表现都非常出色(CMRF-35样分子、白细胞介素受体12亚基B1、分化簇83 [CD83]、序列相似性家族3、胰岛素样生长因子1受体和视蛋白;曲线下面积=1.0;P = 0.007)。

结论

采用特征分类的靶向蛋白质组学能够轻松区分健康对照受试者以及2019冠状病毒病检测为阴性的ICU患者与2019冠状病毒病检测为阳性的ICU患者。识别出多种能准确预测2019冠状病毒病检测为阳性患者死亡率的蛋白质。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7848/7449255/b26a53c29f2a/cc9-2-e0189-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验