Suppr超能文献

碳化硅基纤维束拉伸性能和静态疲劳的统计数据。

Statistical data for the tensile properties and static fatigue of sic-based bundles.

作者信息

Mazerat S, Pailler R

机构信息

Univ. Bordeaux, CNRS, CEA, SAFRAN CERAMICS, LCTS, UMR 5801, F-33600 Pessac, France.

出版信息

Data Brief. 2020 Aug 12;32:106166. doi: 10.1016/j.dib.2020.106166. eCollection 2020 Oct.

Abstract

Due to their high specific strength at elevated temperatures and resistance to oxidative environments, SiC-based fibers are of great interest for the reinforcement of ceramic matrix composites. They are however subjected to a slow crack growth (SCG) phenomenon causing their delayed failure under subcritical conditions. The testing of filaments, other than comprising handling difficulties, requires large sets of data (broadly dispersed), drawback alleviated by multifilament tow testing. The data available in the present paper correspond to a comprehensive mechanical characterization and static fatigue testing of various types of SiC-based fiber bundles. The initial non-linearity of load displacement curves were analyzed to reveal the tow structure originating from filament misalignment. Static fatigue tests were used to assess the lifetime prediction coefficients and its distribution parameters. These data may found interest for the interpretation of dispersion bundle testing can highlight under different solicitation mode. Such data are also prominent for the wealth of composite design and to guaranty long term performances over the broad application field offered.

摘要

由于碳化硅基纤维在高温下具有较高的比强度以及对氧化环境的耐受性,因此对于增强陶瓷基复合材料具有极大的吸引力。然而,它们会出现缓慢裂纹扩展(SCG)现象,导致其在亚临界条件下延迟失效。对单丝进行测试,除了存在操作困难外,还需要大量数据(广泛分散),而多丝束测试缓解了这一缺点。本文提供的数据对应于对各种类型的碳化硅基纤维束进行的全面力学表征和静态疲劳测试。分析了载荷位移曲线的初始非线性,以揭示由单丝排列不齐引起的丝束结构。静态疲劳测试用于评估寿命预测系数及其分布参数。这些数据可能有助于解释在不同加载模式下丝束测试所凸显的分散性。这些数据对于丰富复合材料设计以及确保在广泛应用领域的长期性能也很重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7050/7452681/d1652e18a56e/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验