Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Zahnklinik 1 - Zahnerhaltung und Parodontologie, Forschungslabor für dentale Biomaterialien, Glueckstrasse 11, 91054 Erlangen, Germany; Department of Restorative Dentistry, Faculty of Dentistry, University of Concepción, Concepción, Chile.
Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Zahnklinik 1 - Zahnerhaltung und Parodontologie, Forschungslabor für dentale Biomaterialien, Glueckstrasse 11, 91054 Erlangen, Germany.
Dent Mater. 2018 Jun;34(6):910-921. doi: 10.1016/j.dental.2018.03.024. Epub 2018 Apr 17.
Chemical and mechanical degradation play a key role on the lifetime of dental restorative materials. Therefore, prediction of their long-term performance in the oral environment should base on fatigue, rather than inert strength data, as commonly observed in the dental material's field. The objective of the present study was to provide mechanistic fatigue parameters of current dental CAD/CAM materials under cyclic biaxial flexure and assess their suitability in predicting clinical fracture behaviors.
Eight CAD/CAM materials, including polycrystalline zirconia (IPS e.max ZirCAD), reinforced glasses (Vitablocs Mark II, IPS Empress CAD), glass-ceramics (IPS e.max CAD, Suprinity PC, Celtra Duo), as well as hybrid materials (Enamic, Lava Ultimate) were evaluated. Rectangular plates (12×12×1.2mm) with highly polished surfaces were prepared and tested in biaxial cyclic fatigue in water until fracture using the Ball-on-Three-Balls (B3B) test. Cyclic fatigue parameters n and A* were obtained from the lifetime data for each material and further used to build SPT diagrams. The latter were used to compare in-vitro with in-vivo fracture distributions for IPS e.max CAD and IPS Empress CAD.
Susceptibility to subcritical crack growth under cyclic loading was observed for all materials, being more severe (n≤20) in lithium-based glass-ceramics and Vitablocs Mark II. Strength degradations of 40% up to 60% were predicted after only 1 year of service. Threshold stress intensity factors (K) representing the onset of subcritical crack growth (SCG), were estimated to lie in the range of 0.37-0.44 of K for the lithium-based glass-ceramics and Vitablocs Mark II and between 0.51-0.59 of K for the other materials. Failure distributions associated with mechanistic estimations of strength degradation in-vitro showed to be useful in interpreting failure behavior in-vivo. The parameter K stood out as a better predictor of clinical performance in detriment to the SCG n parameter.
Fatigue parameters obtained from cyclic loading experiments are more reliable predictors of the mechanical performance of contemporary dental CAD/CAM restoratives than quasi-static mechanical properties.
化学和机械降解在牙科修复材料的使用寿命中起着关键作用。因此,预测其在口腔环境中的长期性能应该基于疲劳,而不是牙科材料领域中常见的惰性强度数据。本研究的目的是提供当前牙科 CAD/CAM 材料在循环双轴弯曲下的机械疲劳参数,并评估其在预测临床断裂行为中的适用性。
评估了 8 种 CAD/CAM 材料,包括多晶氧化锆(IPS e.max ZirCAD)、增强玻璃(Vitablocs Mark II、IPS Empress CAD)、玻璃陶瓷(IPS e.max CAD、Suprinity PC、Celtra Duo)以及混合材料(Enamic、Lava Ultimate)。制备具有高度抛光表面的矩形板(12×12×1.2mm),并在水中进行双轴循环疲劳试验,直至使用球对三球(B3B)试验断裂。从每种材料的寿命数据中获得疲劳参数 n 和 A*,并进一步用于构建 SPT 图。后者用于比较 IPS e.max CAD 和 IPS Empress CAD 的体外与体内断裂分布。
所有材料在循环载荷下均表现出亚临界裂纹扩展的敏感性,锂基玻璃陶瓷和 Vitablocs Mark II 更为严重(n≤20)。仅经过 1 年的使用,预计强度降低 40%至 60%。代表亚临界裂纹扩展(SCG)起始的临界应力强度因子(K)估计为锂基玻璃陶瓷和 Vitablocs Mark II 的 K 的 0.37-0.44 之间,而其他材料的 K 的 0.51-0.59 之间。与体外强度降解的机械估计相关的失效分布表明,在解释体内失效行为方面非常有用。参数 K 作为临床性能的更好预测因子,优于 SCG n 参数。
与准静态力学性能相比,从循环加载实验中获得的疲劳参数是对当代牙科 CAD/CAM 修复体机械性能更可靠的预测因子。