Suppr超能文献

具有弯曲诱导性能增强的超薄离子敏感场效应晶体管芯片

Ultrathin Ion-Sensitive Field-Effect Transistor Chips with Bending-Induced Performance Enhancement.

作者信息

Vilouras Anastasios, Christou Adamos, Manjakkal Libu, Dahiya Ravinder

机构信息

Bendable Electronics and Sensing Technologies (BEST) Group, James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, U.K.

出版信息

ACS Appl Electron Mater. 2020 Aug 25;2(8):2601-2610. doi: 10.1021/acsaelm.0c00489. Epub 2020 Jul 13.

Abstract

Flexible multifunctional sensors on skin or wearables are considered highly suitable for next-generation noninvasive health care devices. In this regard, the field-effect transistor (FET)-based chemical sensors such as ion-sensitive FETs (ISFETs) are attractive as, with the ultrathin complementary metal oxide semiconductor technology, they can enable a flexible or bendable sensor system. However, the bending-related stress or strain could change the output of devices on ultrathin chips (UTCs), and this has been argued as a major challenge hindering the advancement and use of this technology in applications such as wearables. This may not be always true, as with drift-free ISFETs, we show that bending could also enhance the performance of UTCs. Through fine control of bending radius in the micrometer scale, the mechanically flexible RuO-based ISFETs on UTCs (44.76 μm thickness) are shown to reproducibly enhance the performance even after 1000 bending cycles. The 1.3 orders of magnitude improved stability (the drift rate changed from -557 nA/min to -28 ± 0.16 nA/min) is observed over a time period of 417.3 s (∼7 min) at fixed biasing and temperature conditions and under different pH conditions. Finally, a compact macromodel is developed to capture the bending-induced improvements in flexible ISFETs. The performance enhancement by controlled bending of devices could generally benefit the rapidly growing field of flexible electronics.

摘要

皮肤或可穿戴设备上的柔性多功能传感器被认为非常适合下一代非侵入式医疗保健设备。在这方面,基于场效应晶体管(FET)的化学传感器,如离子敏感场效应晶体管(ISFET)很有吸引力,因为采用超薄互补金属氧化物半导体技术,它们能够实现柔性或可弯曲的传感器系统。然而,与弯曲相关的应力或应变可能会改变超薄芯片(UTC)上器件的输出,这被认为是阻碍该技术在可穿戴设备等应用中发展和应用的主要挑战。但情况并非总是如此,对于无漂移ISFET,我们发现弯曲也可以提高UTC的性能。通过在微米尺度上精确控制弯曲半径,UTC(厚度为44.76μm)上基于RuO的机械柔性ISFET即使在1000次弯曲循环后仍能可重复地提高性能。在固定偏置和温度条件下以及不同pH条件下,在417.3秒(约7分钟)的时间段内观察到稳定性提高了1.3个数量级(漂移率从-557 nA/分钟变为-28±0.16 nA/分钟)。最后,开发了一个紧凑的宏模型来捕捉弯曲对柔性ISFET的性能提升。通过对器件进行可控弯曲来提高性能,这通常会有利于快速发展的柔性电子领域。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d920/7461133/0a48fd904827/el0c00489_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验