Ajsuvakova Olga P, Tinkov Alexey A, Aschner Michael, Rocha João B T, Michalke Bernhard, Skalnaya Margarita G, Skalny Anatoly V, Butnariu Monica, Dadar Maryam, Sarac Ioan, Aaseth Jan, Bjørklund Geir
Yaroslavl State University, Yaroslavl, Russia.
Federal Scientific Center of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, Orenburg, Russia.
Coord Chem Rev. 2020 Aug 15;417. doi: 10.1016/j.ccr.2020.213343. Epub 2020 May 7.
The present study addresses existing data on the affinity and conjugation of sulfhydryl (thiol; -SH) groups of low- and high-molecular-weight biological ligands with mercury (Hg). The consequences of these interactions with special emphasis on pathways of Hg toxicity are highlighted. Cysteine (Cys) is considered the primary target of Hg, and link its sensitivity with thiol groups and cellular damage. , Hg complexes play a key role in Hg metabolism. Due to the increased affinity of Hg to SH groups in Cys residues, glutathione (GSH) is reactive. The geometry of Hg(II) glutathionates is less understood than that with Cys. Both Cys and GSH Hg-conjugates are important in Hg transport. The binding of Hg to Cys mediates multiple toxic effects of Hg, especially inhibitory effects on enzymes and other proteins that contain free Cys residues. In blood plasma, albumin is the main Hg-binding (Hg, CHHg, CHHg, CHHg) protein. At the Cys residue, Hg binds to albumin, whereas other metals likely are bound at the N-terminal site and multi-metal binding sites. In addition to albumin, Hg binds to multiple Cys-containing enzymes (including manganese-superoxide dismutase (Mn-SOD), arginase I, sorbitol dehydrogenase, and δ-aminolevulinate dehydratase, etc.) involved in multiple processes. The affinity of Hg for thiol groups may also underlie the pathways of Hg toxicity. In particular, Hg-SH may contribute to apoptosis modulation by interfering with Akt/CREB, Keap1/Nrf2, NF-κB, and mitochondrial pathways. Mercury-induced oxidative stress may ensue from Cys-Hg binding and inhibition of Mn-SOD (Cys), thioredoxin reductase (TrxR) (Cys) activity, as well as limiting GSH (GS-HgCH) and Trx (Cys) availability. Moreover, Hg-thiol interaction also is crucial in the neurotoxicity of Hg by modulating the cytoskeleton and neuronal receptors, to name a few. However, existing data on the role of Hg-SH binding in the Hg toxicity remains poorly defined. Therefore, more research is needed to understand better the role of Hg-thiol binding in the molecular pathways of Hg toxicology and the critical role of thiols to counteract negative effects of Hg overload.
本研究探讨了低分子量和高分子量生物配体的巯基(硫醇;-SH)基团与汞(Hg)的亲和力和结合情况。重点强调了这些相互作用对汞毒性途径的影响。半胱氨酸(Cys)被认为是汞的主要作用靶点,并将其敏感性与硫醇基团及细胞损伤联系起来。此外,汞配合物在汞代谢中起关键作用。由于汞对Cys残基中SH基团的亲和力增加,谷胱甘肽(GSH)具有反应活性。与Cys相比,人们对汞-谷胱甘肽盐的几何结构了解较少。Cys和GSH汞结合物在汞运输中都很重要。汞与Cys的结合介导了汞的多种毒性作用,尤其是对含有游离Cys残基的酶和其他蛋白质的抑制作用。在血浆中,白蛋白是主要的汞结合(Hg、CHHg、CHHg、CHHg)蛋白。在Cys残基处,汞与白蛋白结合,而其他金属可能结合在N端位点和多金属结合位点。除了白蛋白,汞还与多种含Cys的酶(包括锰超氧化物歧化酶(Mn-SOD)、精氨酸酶I、山梨醇脱氢酶和δ-氨基乙酰丙酸脱水酶等)结合,这些酶参与多个过程。汞对硫醇基团的亲和力也可能是汞毒性途径的基础。特别是,Hg-SH可能通过干扰Akt/CREB、Keap1/Nrf2、NF-κB和线粒体途径来调节细胞凋亡。汞诱导的氧化应激可能源于Cys-Hg结合以及对Mn-SOD(Cys)、硫氧还蛋白还原酶(TrxR)(Cys)活性的抑制,以及限制GSH(GS-HgCH)和Trx(Cys)的可用性。此外,汞-硫醇相互作用在汞的神经毒性中也至关重要,例如调节细胞骨架和神经元受体等。然而,关于Hg-SH结合在汞毒性中的作用,现有数据仍不明确。因此,需要更多的研究来更好地理解Hg-硫醇结合在汞毒理学分子途径中的作用以及硫醇在抵消汞过载负面影响方面的关键作用。