Mondal Sukanta K, Welz Adam, Rezaei Fateme, Kumar Aditya, Okoronkwo Monday U
Sustainable Materials Laboratory (SusMatLab), Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409, United States.
Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409, United States.
ACS Omega. 2020 Aug 19;5(34):21689-21699. doi: 10.1021/acsomega.0c02591. eCollection 2020 Sep 1.
The geopolymer-an inorganic polymeric material synthesized from the reaction of aluminosilicate precursors and alkaline activating solutions-has gained wide research attention in recent decades as a promising adsorbent for the removal of aqueous heavy metals. However, the high variability of the material and several unanswered questions have limited its development and general adoption in the industry. This study evaluates the impacts of composition and microstructure on the performance of geopolymers for aqueous lead (Pb) removal to elucidate the composition-structure-property relationship. The Pb sorption kinetics and efficiency of four geopolymers, prepared using different fly ash precursors and activating solutions, were investigated. Although all the four geopolymer compositions studied displayed a high Pb removal efficiency of over 99.5%, with a slight decrease in efficiency with increasing Ca/(Si + Al) and Al/Si contents, the results show that the sorption kinetics decreases exponentially with increasing Ca/(Si + Al) and Al/Si molar ratios. The performance of the geopolymers also shows strong correlation to the microstructure, wherein the sorption kinetics increases exponentially, while the efficiency increases slightly, with increasing mass fraction of the amorphous phase in the geopolymer's phase assemblage. The results of this research indicate that using appropriate precursor formulation and curing conditions to evoke the best microstructures, geopolymer materials can be optimized for high performance in removing heavy metals, thereby improving the chances of the material's general acceptability in the adsorbent industry.
地质聚合物——一种由硅铝酸盐前驱体与碱性活化溶液反应合成的无机聚合物材料——近几十年来作为一种有前景的去除水中重金属的吸附剂受到了广泛的研究关注。然而,该材料的高度变异性以及一些未解决的问题限制了其在工业中的发展和广泛应用。本研究评估了组成和微观结构对地质聚合物去除水中铅(Pb)性能的影响,以阐明组成 - 结构 - 性能关系。研究了使用不同粉煤灰前驱体和活化溶液制备的四种地质聚合物对铅的吸附动力学和效率。尽管所研究的所有四种地质聚合物组成都显示出超过99.5%的高铅去除效率,且随着Ca/(Si + Al)和Al/Si含量的增加效率略有下降,但结果表明吸附动力学随着Ca/(Si + Al)和Al/Si摩尔比的增加呈指数下降。地质聚合物的性能还与微观结构密切相关,其中随着地质聚合物相组合中非晶相质量分数的增加,吸附动力学呈指数增加,而效率略有增加。本研究结果表明,通过使用合适的前驱体配方和固化条件来引发最佳微观结构,可以优化地质聚合物材料以实现高效去除重金属,从而提高该材料在吸附剂行业中被普遍接受的可能性。