Suppr超能文献

通量平衡分析揭示厌氧消化微生物组中的相互作用代谢机制。

Revealing metabolic mechanisms of interaction in the anaerobic digestion microbiome by flux balance analysis.

机构信息

Department of Biology, University of Padova, Via U. Bassi 58/b, 35121, Padua, Italy.

Department of Biology, University of Padova, Via U. Bassi 58/b, 35121, Padua, Italy; CRIBI Biotechnology Center, University of Padova, 35131, Padua, Italy.

出版信息

Metab Eng. 2020 Nov;62:138-149. doi: 10.1016/j.ymben.2020.08.013. Epub 2020 Sep 6.

Abstract

Anaerobic digestion is a key biological process for renewable energy, yet the mechanistic knowledge on its hidden microbial dynamics is still limited. The present work charted the interaction network in the anaerobic digestion microbiome via the full characterization of pairwise interactions and the associated metabolite exchanges. To this goal, a novel collection of 836 genome-scale metabolic models was built to represent the functional capabilities of bacteria and archaea species derived from genome-centric metagenomics. Dominant microbes were shown to prefer mutualistic, parasitic and commensalistic interactions over neutralism, amensalism and competition, and are more likely to behave as metabolite importers and profiteers of the coexistence. Additionally, external hydrogen injection positively influences microbiome dynamics by promoting commensalism over amensalism. Finally, exchanges of glucogenic amino acids were shown to overcome auxotrophies caused by an incomplete tricarboxylic acid cycle. Our novel strategy predicted the most favourable growth conditions for the microbes, overall suggesting strategies to increasing the biogas production efficiency. In principle, this approach could also be applied to microbial populations of biomedical importance, such as the gut microbiome, to allow a broad inspection of the microbial interplays.

摘要

厌氧消化是可再生能源的关键生物过程,但对其隐藏微生物动态的机理知识仍然有限。本工作通过全面表征成对相互作用和相关代谢物交换,绘制了厌氧消化微生物组中的相互作用网络。为此,构建了一个新的 836 个基因组规模代谢模型集合,以代表源自基于基因组的宏基因组学的细菌和古菌物种的功能能力。结果表明,优势微生物更喜欢互利共生、寄生和共生相互作用,而不是中性、共栖和竞争,并且更有可能作为共存的代谢物进口商和获利者。此外,外部氢气注入通过促进共栖而不是共栖来积极影响微生物组动态。最后,显示出糖质氨基酸的交换可以克服不完全三羧酸循环引起的营养缺陷。我们的新策略预测了微生物最有利的生长条件,总体上提出了提高沼气生产效率的策略。原则上,这种方法也可以应用于具有重要生物医学意义的微生物群,例如肠道微生物组,以允许广泛检查微生物相互作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验