Suppr超能文献

将宏基因组 binning 与通量平衡分析相结合,以揭示厌氧 CO 甲烷化中的共营养关系。

Integrating metagenomic binning with flux balance analysis to unravel syntrophies in anaerobic CO methanation.

机构信息

Department of Biology, University of Padova, Via U. Bassi 58/b, 35121, Padua, Italy.

Department of Environmental Engineering, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark.

出版信息

Microbiome. 2022 Aug 3;10(1):117. doi: 10.1186/s40168-022-01311-1.

Abstract

BACKGROUND

Carbon fixation through biological methanation has emerged as a promising technology to produce renewable energy in the context of the circular economy. The anaerobic digestion microbiome is the fundamental biological system operating biogas upgrading and is paramount in power-to-gas conversion. Carbon dioxide (CO) methanation is frequently performed by microbiota attached to solid supports generating biofilms. Despite the apparent simplicity of the microbial community involved in biogas upgrading, the dynamics behind most of the interspecies interaction remain obscure. To understand the role of the microbial species in CO fixation, the biofilm generated during the biogas upgrading process has been selected as a case study. The present work investigates via genome-centric metagenomics, based on a hybrid Nanopore-Illumina approach the biofilm developed on the diffusion devices of four ex situ biogas upgrading reactors. Moreover, genome-guided metabolic reconstruction and flux balance analysis were used to propose a biological role for the dominant microbes.

RESULTS

The combined microbiome was composed of 59 species, with five being dominant (> 70% of total abundance); the metagenome-assembled genomes representing these species were refined to reach a high level of completeness. Genome-guided metabolic analysis appointed Firmicutes sp. GSMM966 as the main responsible for biofilm formation. Additionally, species interactions were investigated considering their co-occurrence in 134 samples, and in terms of metabolic exchanges through flux balance simulation in a simplified medium. Some of the most abundant species (e.g., Limnochordia sp. GSMM975) were widespread (~ 67% of tested experiments), while others (e.g., Methanothermobacter wolfeii GSMM957) had a scattered distribution. Genome-scale metabolic models of the microbial community were built with boundary conditions taken from the biochemical data and showed the presence of a flexible interaction network mainly based on hydrogen and carbon dioxide uptake and formate exchange.

CONCLUSIONS

Our work investigated the interplay between five dominant species within the biofilm and showed their importance in a large spectrum of anaerobic biogas reactor samples. Flux balance analysis provided a deeper insight into the potential syntrophic interaction between species, especially Limnochordia sp. GSMM975 and Methanothermobacter wolfeii GSMM957. Finally, it suggested species interactions to be based on formate and amino acids exchanges. Video Abstract.

摘要

背景

在循环经济背景下,通过生物甲烷化进行碳固定已成为生产可再生能源的一项有前途的技术。厌氧消化微生物组是运行沼气升级的基本生物系统,在电力到气体的转换中至关重要。二氧化碳(CO)甲烷化通常由附着在固体载体上生成生物膜的微生物群落完成。尽管参与沼气升级的微生物群落看似简单,但大多数种间相互作用的背后动力学仍然不清楚。为了了解微生物物种在 CO 固定中的作用,选择生物沼气升级过程中产生的生物膜作为案例研究。本工作通过基于纳米孔- Illumina 混合方法的基于基因组的宏基因组学,研究了四个异位沼气升级反应器扩散装置上形成的生物膜。此外,还使用基因组指导的代谢重建和通量平衡分析来为优势微生物提出生物作用。

结果

组合微生物组由 59 个物种组成,其中 5 个占主导地位(>总丰度的 70%);代表这些物种的宏基因组组装基因组被精炼以达到高水平的完整性。基因组指导的代谢分析将 Firmicutes sp. GSMM966 指定为生物膜形成的主要责任人。此外,还通过在简化培养基中进行通量平衡模拟,从共现和代谢交换的角度研究了种间相互作用。一些最丰富的物种(例如,Limnochordia sp. GSMM975)分布广泛(~测试实验的 67%),而其他物种(例如,Methanothermobacter wolfeii GSMM957)则分布分散。根据生化数据构建了微生物群落的基因组规模代谢模型,并显示出存在基于氢气和二氧化碳摄取和甲酸盐交换的灵活相互作用网络。

结论

我们的工作研究了生物膜中五个主要物种之间的相互作用,并展示了它们在广泛的厌氧沼气反应器样本中的重要性。通量平衡分析提供了对种间潜在共生相互作用的更深入了解,特别是 Limnochordia sp. GSMM975 和 Methanothermobacter wolfeii GSMM957。最后,它表明物种相互作用基于甲酸盐和氨基酸交换。视频摘要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/93d0/9347119/755eee990811/40168_2022_1311_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验