Suppr超能文献

利用 SERS 耦合多壁碳纳米管快速定量检测 中的氯菊酯

Rapid Quantitative Detection of Deltamethrin in by SERS Coupled with Multi-Walled Carbon Nanotubes.

机构信息

College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.

Key Laboratory of Spectroscopy Sensing, Ministry of Agriculture, Hangzhou 310058, China.

出版信息

Molecules. 2020 Sep 7;25(18):4081. doi: 10.3390/molecules25184081.

Abstract

With the increase in demand, artificially planting Chinese medicinal materials (CHMs) has also increased, and the ensuing pesticide residue problems have attracted more and more attention. An optimized quick, easy, cheap, effective, rugged and safe (QuEChERS) method with multi-walled carbon nanotubes as dispersive solid-phase extraction sorbents coupled with surface-enhanced Raman spectroscopy (SERS) was first proposed for the detection of deltamethrin in complex matrix . Our results demonstrate that using the optimized QuEChERS method could effectively extract the analyte and reduce background interference from . Facile synthesized gold nanoparticles with a large diameter of 75 nm had a strong SERS enhancement for deltamethrin determination. The best prediction model was established with partial least squares regression of the SERS spectra ranges of 545573 cm and 9871011 cm with a coefficient of determination () of 0.9306, a detection limit of 0.484 mg/L and a residual predictive deviation of 3.046. In summary, this article provides a new rapid and effective method for the detection of pesticide residues in CHMs.

摘要

随着需求的增加,中药材的人工种植也有所增加,随之而来的农药残留问题越来越受到关注。本文首次提出了一种优化的快速、简便、廉价、有效、耐用和安全(QuEChERS)方法,使用多壁碳纳米管作为分散固相萃取吸附剂,并结合表面增强拉曼光谱(SERS),用于检测复杂基质中的氯菊酯。结果表明,优化的 QuEChERS 方法可以有效地提取分析物,并减少背景干扰。合成的直径为 75nm 的金纳米粒子具有很强的 SERS 增强作用,可用于氯菊酯的测定。使用 SERS 光谱范围为 545573cm 和 9871011cm 的偏最小二乘回归建立了最佳预测模型,决定系数(R2)为 0.9306,检测限为 0.484mg/L,残留预测偏差为 3.046。综上所述,本文为中药材中农药残留的检测提供了一种快速有效的新方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/76f5/7570915/6fda4505432f/molecules-25-04081-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验