Suppr超能文献

居家防控新冠疫情:神经 - 传染病动力学模型——社交网络中感染模式的神经动力学疫情建模

#stayhome to contain Covid-19: Neuro-SIR - Neurodynamical epidemic modeling of infection patterns in social networks.

作者信息

Lymperopoulos Ilias N

机构信息

Department of Management Science and Technology, Athens University of Economics and Business, 47a Evelpidon Str., Athens, 11362, Greece.

出版信息

Expert Syst Appl. 2021 Mar 1;165:113970. doi: 10.1016/j.eswa.2020.113970. Epub 2020 Sep 3.

Abstract

An innovative neurodynamical model of epidemics in social networks - the Neuro-SIR - is introduced. Susceptible-Infected-Removed (SIR) epidemic processes are mechanistically modeled as analogous to the activity propagation in neuronal populations. The workings of infection transmission from individual to individual through a network of social contacts, is driven by the dynamics of the threshold mechanism of leaky integrate-and-fire neurons. Through this approach a dynamically evolving landscape of the susceptibility of a population to a disease is formed. In this context, epidemics with varying velocities and scales are triggered by a small fraction of infected individuals according to the configuration of various endogenous and exogenous factors representing the individuals' vulnerability, the infectiousness of a pathogen, the density of a contact network, and environmental conditions. Adjustments in the length of immunity (if any) after recovery, enable the modeling of the Susceptible-Infected-Recovered-Susceptible (SIRS) process of recurrent epidemics. Neuro-SIR by supporting an impressive level of heterogeneities in the description of a population, contagiousness of a disease, and external factors, allows a more insightful investigation of epidemic spreading in comparison with existing approaches. Through simulation experiments with Neuro-SIR, we demonstrate the effectiveness of the #stayhome strategy for containing Covid-19, and successfully validate the simulation results against the classical epidemiological theory. Neuro-SIR is applicable in designing and assessing prevention and control strategies for spreading diseases, as well as in predicting the evolution pattern of epidemics.

摘要

本文介绍了一种创新的社交网络中流行病神经动力学模型——神经易感-感染-康复(Neuro-SIR)模型。易感-感染-康复(SIR)流行病过程被机械地建模为类似于神经元群体中的活动传播。个体之间通过社交接触网络进行感染传播的过程,由泄漏积分发放神经元阈值机制的动力学驱动。通过这种方法,形成了一个群体对疾病易感性的动态演变图景。在这种情况下,根据代表个体易感性、病原体传染性、接触网络密度和环境条件的各种内源性和外源性因素的配置,一小部分受感染个体可引发不同速度和规模的流行病。恢复后免疫期长度(如果有)的调整,使得能够对反复流行的易感-感染-康复-易感(SIRS)过程进行建模。与现有方法相比,Neuro-SIR在描述群体、疾病传染性和外部因素时支持了令人印象深刻的异质性水平,从而能够更深入地研究流行病传播。通过使用Neuro-SIR进行模拟实验,我们证明了“居家隔离”策略对遏制新冠疫情的有效性,并成功地根据经典流行病学理论验证了模拟结果。Neuro-SIR可应用于设计和评估疾病传播的预防和控制策略,以及预测流行病的演变模式。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2dc1/7470771/07ff25067a3a/gr1_lrg.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验