Suppr超能文献

离散时间 SIRS 模型中的同质混合和网络逼近。

Homogenous mixing and network approximations in discrete-time formulation of a SIRS model.

机构信息

ISEP, Paris, France.

出版信息

J Biol Dyn. 2021 Dec;15(1):635-651. doi: 10.1080/17513758.2021.2005835.

Abstract

A discrete-time deterministic epidemic model is proposed to better understand the contagious dynamics and the behaviour observed in the incidence of real infectious diseases. For this purpose, we analyse a SIRS model both in a random-mixing approach and in a small-world network formulation. The models include the basic parameters that characterize an epidemic: infection and recovery times, as well as mechanisms of contagion. Depending on the parameters, the random-mixing model has different types of behaviour of an epidemic: pathogen extinction; endemic infection; sustained oscillations and dynamic extinction. Spatial effects are included in our network-based approach, where each individual of a population is represented by a node of a small-world network. Our network-based approach includes rewiring connections to account for time-varying network structure, a consequence of the natural response to the emergence of an epidemic (e.g. avoiding contacts with infected individuals). Random and adaptive rewiring conditions are analysed and numerical simulation are made. A comparison of model predictions with the actual effects of COVID-19 infection on population that occurred in Italy and France is produced. Results of the time series of infected people show that our adaptive evolving networks represent effective strategies able to decrease the epidemic spreading.

摘要

我们提出了一个离散时间确定性传染病模型,以更好地理解实际传染病发病率中的传染性动态和行为。为此,我们在随机混合方法和小世界网络公式中分析了 SIRS 模型。这些模型包括表征传染病的基本参数:感染和恢复时间,以及传染机制。根据参数的不同,随机混合模型具有不同类型的传染病行为:病原体灭绝;地方性感染;持续振荡和动态灭绝。我们的基于网络的方法包括空间效应,其中人群中的每个个体都由一个小世界网络的节点表示。我们的基于网络的方法包括重新布线连接,以考虑到网络结构随时间变化的情况,这是对传染病(例如避免与感染个体接触)出现的自然反应的结果。分析了随机和自适应重新布线条件,并进行了数值模拟。还对意大利和法国发生的 COVID-19 感染对人口的实际影响与模型预测进行了比较。受感染人数的时间序列结果表明,我们的自适应演化网络代表了能够降低传染病传播的有效策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验