Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), University of Poitiers, CNRS, 4 rue Michel Brunet, TSA51106, F86073, Poitiers Cedex 9, France.
Chemphyschem. 2020 Oct 16;21(20):2357-2363. doi: 10.1002/cphc.202000574. Epub 2020 Oct 1.
The oxygen isotopic exchange technique is a powerful tool to investigate the oxygen transport kinetics in an oxide solid. In a solid oxide fuel cell, isotopic surface exchange and diffusion coefficients are classically determined by using the Isotopic Exchange Depth Profiling method followed by ex situ SIMS characterizations. Despite its relevance, the utilization of in situ or operando techniques to measure the isotopic exchange under an electrical bias remains marginal. We developed here a set-up which enables operando monitoring of oxygen exchange in SOFC type cells under polarization. The system has been used for studying the oxygen mobility dependency upon polarization on a symmetrical Pt/YSZ/Pt cell (YSZ: yttria-stabilized zirconia). Homomolecular and heterolytic exchange reactions were undertaken to investigate the oxygen activation step and discriminate the limiting step among the sequence of elementary steps which constitute the oxygen transport process in the SOFC system. Oxygen ions incorporation into the dense ionic conductor was identified to be the rate determining step, and its first order rate constant dependency on applied potential was established.
氧同位素交换技术是研究氧化物固体中氧传输动力学的有力工具。在固体氧化物燃料电池中,同位素表面交换和扩散系数通常通过使用同位素交换深度剖析方法并结合在位外 SIMS 特性来确定。尽管该方法具有相关性,但在电偏压下测量同位素交换的原位或在位技术的应用仍然很少。我们在这里开发了一种装置,可在极化下对 SOFC 型电池中的氧交换进行在位监测。该系统已用于研究对称 Pt/YSZ/Pt 电池(YSZ:氧化钇稳定的氧化锆)中极化对氧迁移率的依赖性。进行了同分子和异裂交换反应,以研究氧活化步骤,并区分构成 SOFC 系统中氧传输过程的基本步骤序列中的限制步骤。氧离子掺入致密的离子导体被确定为速率决定步骤,并确定了其对施加电势的一级速率常数依赖性。