Department of Nutrition and Diet, Faculty of Health Sciences, Sivas 52954Cumhuriyet University, Sivas, Turkey.
Department of Chemical Engineering, Faculty of Engineering, 52954Sivas Cumhuriyet University, Sivas, Turkey.
Hum Exp Toxicol. 2021 Jan;40(1):172-182. doi: 10.1177/0960327120950008. Epub 2020 Sep 10.
Graphene oxide (GO) has recently been considered one of the most promising carbon derivatives in nanotechnology. It has many excellent features such as tumor targeting ability, biocompatibility and low toxicity. Therefore, we conjugated docetaxel (DTX) to GO-PEG molecule and investigate its anticancer efficacy in prostate cancer cell line (DU-145). In order to obtain GO-PEG-DTX molecules, we conjugated the DTX via bonds to PEG chains pegylated to the GO surface. We also investigated the stability of GO-PEG-DTX in different biological fluids such as cell mediums, PBS and water in vitro conditions. GO-PEG-DTX has the highest zeta potential in water. In the current research SEM, UV-Vis, and FTIR analyses and zeta potential were utilized for the characterization of nano-sized GO-PEG-DTX. Anticancer efficacy of GO-PEG-DTX were then investigated in DU-145 prostate cancer cell line using MTT metod. The prostate cancer cells were treated by different concentrations of GO-PEG-DTX, GO-PEG, GO, and DTX (1-100 µg/ml) during 24, 48 and 72 h. The spectrophotometric analyzed values at 570 nm were recorded and analysed with Graphpad Prism7. IC growth inhibition values was determined. The data showed that the GO-PEG-DTX had a highly effective anticancer activity on prostate cancer cell lines after 24, 48 and 72 hours compared to other molecules. GO-PEG-DTX was found statistically significant in the DU-145 cell line (***p < 0.0001, **p < 0.001, and *p < 0.01). As a result, it can be said that PEGylated GO is an excellent nanocarrier system for the high anticancer activity of DTX. Loading of anticancer drugs using this type of graphene-based nano carrier and delivery to targeted tissues may find potential application in biomedicine.
氧化石墨烯(GO)最近被认为是纳米技术中最有前途的碳衍生物之一。它具有许多优异的特性,如肿瘤靶向能力、生物相容性和低毒性。因此,我们将多西紫杉醇(DTX)与 GO-PEG 分子偶联,并研究其在前列腺癌细胞系(DU-145)中的抗癌功效。为了获得 GO-PEG-DTX 分子,我们通过键将 DTX 偶联到接枝到 GO 表面的 PEG 链上。我们还研究了 GO-PEG-DTX 在不同生物流体(如细胞培养基、PBS 和水)中的稳定性。GO-PEG-DTX 在水中具有最高的 ζ 电位。在目前的研究中,我们利用 SEM、UV-Vis、FTIR 分析和 ζ 电位对纳米级 GO-PEG-DTX 进行了表征。然后,我们使用 MTT 法研究了 GO-PEG-DTX 在 DU-145 前列腺癌细胞系中的抗癌功效。将前列腺癌细胞用不同浓度的 GO-PEG-DTX、GO-PEG、GO 和 DTX(1-100μg/ml)处理 24、48 和 72 小时。在 570nm 处记录分光光度分析值,并使用 Graphpad Prism7 进行分析。确定 IC 生长抑制值。数据显示,与其他分子相比,GO-PEG-DTX 在 24、48 和 72 小时后对前列腺癌细胞系具有高度有效的抗癌活性。GO-PEG-DTX 在 DU-145 细胞系中具有统计学意义(***p <0.0001,**p <0.001,*p <0.01)。因此,可以说 PEG 化 GO 是 DTX 高抗癌活性的理想纳米载体系统。使用这种基于石墨烯的纳米载体负载抗癌药物并递送到靶向组织可能在生物医学中具有潜在的应用。
Colloids Surf B Biointerfaces. 2016-3-18
Nanomedicine (Lond). 2015
ACS Appl Mater Interfaces. 2016-5-17
Artif Cells Nanomed Biotechnol. 2017-5
Colloids Surf B Biointerfaces. 2020-10
Pharmaceutics. 2023-5-19
Nanomaterials (Basel). 2021-11-28
Materials (Basel). 2021-2-24