Cheng Chew Weng, Beech David J, Wheatcroft Stephen B
Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, LS2 9JT, UK.
Comput Biol Med. 2020 Oct;125:103975. doi: 10.1016/j.compbiomed.2020.103975. Epub 2020 Sep 1.
Gene co-expression analysis is widely applied to transcriptomics data to associate clusters of genes with biological functions or identify therapeutic targets in diseases. Recently, the emergence of high-throughput technologies for gene expression analyses allows researchers to establish connections through gene co-expression analysis to identify clinical disease markers. However, gene co-expression analysis is complex and may be a daunting task. Here, we evaluate three co-expression analysis packages (WGCNA, CEMiTool, and coseq) using published RNA-seq datasets derived from ischemic cardiomyopathy and chronic obstructive pulmonary disease. Results show that the packages produced consensus co-expression clusters using default parameters. CEMiTool package outperformed the other two packages and required less computational resource and bioinformatics experience. This evaluation provides a basis on which data analysts can select bioinformatics tools for gene co-expression analysis.
基因共表达分析被广泛应用于转录组学数据,以将基因簇与生物学功能相关联或识别疾病中的治疗靶点。最近,用于基因表达分析的高通量技术的出现使研究人员能够通过基因共表达分析建立联系,以识别临床疾病标志物。然而,基因共表达分析很复杂,可能是一项艰巨的任务。在这里,我们使用从缺血性心肌病和慢性阻塞性肺疾病中获得的已发表RNA测序数据集,评估了三个共表达分析软件包(WGCNA、CEMiTool和coseq)。结果表明,这些软件包使用默认参数生成了一致的共表达簇。CEMiTool软件包的表现优于其他两个软件包,并且所需的计算资源和生物信息学经验更少。该评估为数据分析师选择用于基因共表达分析的生物信息学工具提供了依据。