Zhang Yumin, Viswanathan Venkatasubramanian
Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213-3815, United States.
Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213-3815, United States.
Langmuir. 2020 Oct 6;36(39):11450-11466. doi: 10.1021/acs.langmuir.0c01652. Epub 2020 Sep 23.
Li metal batteries (LMBs) are crucial for electrifying transportation and aviation. Engineering electrolytes to form desired solid-electrolyte interphase (SEI) is one of the most promising approaches to enable stable long-lasting LMBs. Among the liquid electrolytes explored, fluoroethylene carbonate (FEC) has seen great success in leading to desirable SEI properties for enabling stable cycling of LMBs. Given the many facets to desirable SEI properties, numerous descriptors and mechanisms have been proposed. To build a detailed mechanistic understanding, we analyze varying degrees of fluorination of the same prototype molecule, chosen to be ethylene carbonate (EC) to tease out the interfacial reactivity at the Li metal/electrolyte. Using density functional theory (DFT) calculations, we study the effect of mono-, di-, tri-, and tetra-fluorine substitutions of EC on its reactivity with Li surface facets in the presence and absence of Li salt. We find that the formation of LiF at the early stage of SEI formation, posited as a desirable SEI component, depends on the F-abstraction mechanism rather than the number of fluorine substitution. The best illustrations of this are - and -difluoro ECs, where F-abstraction is spontaneous with the trans case, while the cis case needs to overcome a nonzero energy barrier. Using a Pearson correlation map, we find that the extent of initial chemical decomposition quantified by the associated reaction free energy is linearly correlated with the charge transferred from the Li surface and the number of covalent-like bonds formed at the surface. The effect of salt and the surface facet have a much weaker role in determining the decompositions at the immediate electrolyte/electrode interfaces. Putting all of this together, we find that tetra-FEC could act as a high-performing SEI modifier as it leads to a more homogeneous, denser LiF-containing SEI. Using this methodology, future investigations will explore -CF functionalization and other backbone molecules (linear carbonates).
锂金属电池(LMBs)对于交通运输和航空电气化至关重要。设计电解质以形成所需的固体电解质界面(SEI)是实现稳定持久的LMBs的最有前景的方法之一。在探索的液体电解质中,氟代碳酸乙烯酯(FEC)在实现使LMBs稳定循环所需的SEI性能方面取得了巨大成功。鉴于所需SEI性能的多个方面,已经提出了许多描述符和机制。为了建立详细的机理理解,我们分析了同一原型分子(选择为碳酸乙烯酯(EC))的不同程度的氟化,以梳理锂金属/电解质界面的反应性。使用密度泛函理论(DFT)计算,我们研究了EC的单氟、二氟、三氟和四氟取代对其在有无锂盐存在下与锂表面晶面反应性的影响。我们发现,在SEI形成早期被认为是理想SEI成分的LiF的形成,取决于F-提取机制而非氟取代的数量。最好的例子是反式和顺式二氟ECs,其中反式情况下F-提取是自发的,而顺式情况需要克服非零能垒。使用皮尔逊相关图,我们发现由相关反应自由能量化的初始化学分解程度与从锂表面转移的电荷以及表面形成的类共价键数量呈线性相关。盐和表面晶面在确定紧邻电解质/电极界面处的分解方面作用要弱得多。综合所有这些,我们发现四氟FEC可以作为一种高性能的SEI改性剂,因为它会导致形成更均匀、更致密的含LiF的SEI。使用这种方法,未来的研究将探索-CF官能化和其他主链分子(线性碳酸酯)。