Suppr超能文献

碳酸氟乙烯酯添加剂对锂离子电池中氧官能化石墨负极上固体电解质界面初始形成的影响。

Effect of Fluoroethylene Carbonate Additives on the Initial Formation of the Solid Electrolyte Interphase on an Oxygen-Functionalized Graphitic Anode in Lithium-Ion Batteries.

作者信息

Intan Nadia N, Pfaendtner Jim

机构信息

Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States.

Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States.

出版信息

ACS Appl Mater Interfaces. 2021 Feb 24;13(7):8169-8180. doi: 10.1021/acsami.0c18414. Epub 2021 Feb 15.

Abstract

The formation of a solid electrolyte interphase (SEI) at the electrode/electrolyte interface substantially affects the stability and lifetime of lithium-ion batteries (LIBs). One of the methods to improve the lifetime of LIBs is by the inclusion of additive molecules to stabilize the SEI. To understand the effect of additive molecules on the initial stage of SEI formation, we compare the decomposition and oligomerization reactions of a fluoroethylene carbonate (FEC) additive on a range of oxygen-functionalized graphitic anodes to those of an ethylene carbonate (EC) organic electrolyte. A series of density functional theory (DFT) calculations augmented by ab initio molecular dynamics (AIMD) simulations reveal that EC decomposition on an oxygen-functionalized graphitic (112̅0) edge facet through a nucleophilic attack on an ethylene carbon site (C) of an EC molecule (S2 mechanism) is spontaneous during the initial charging process of LIBs. However, decomposition of EC through a nucleophilic attack on a carbonyl carbon (C) site (S1 mechanism) results in alkoxide species regeneration that is responsible for continual oligomerization along the graphitic surface. In contrast, FEC prefers to decompose through an S1 pathway, which does not promote alkoxide regeneration. Including FEC as an additive is thus able to suppress alkoxide regeneration and results in a smaller and thinner SEI layer that is more flexible toward lithium intercalation during the charging/discharging process. In addition, we find that the presence of different oxygen functional groups at the surface of graphite dictates the oligomerization products and the LiF formation mechanism in the SEI.

摘要

电极/电解质界面处固体电解质界面(SEI)的形成对锂离子电池(LIBs)的稳定性和寿命有重大影响。提高LIBs寿命的方法之一是加入添加剂分子以稳定SEI。为了解添加剂分子对SEI形成初始阶段的影响,我们将碳酸氟乙烯酯(FEC)添加剂在一系列氧官能化石墨阳极上的分解和低聚反应与碳酸乙烯酯(EC)有机电解质的分解和低聚反应进行了比较。一系列由从头算分子动力学(AIMD)模拟增强的密度泛函理论(DFT)计算表明,在LIBs的初始充电过程中,EC通过对EC分子乙烯碳位点(C)的亲核攻击(S2机制)在氧官能化石墨(112̅0)边缘面的分解是自发的。然而,EC通过对羰基碳(C)位点的亲核攻击(S1机制)分解会导致醇盐物种再生,这是沿石墨表面持续低聚的原因。相比之下,FEC更倾向于通过S1途径分解,该途径不会促进醇盐再生。因此,加入FEC作为添加剂能够抑制醇盐再生,并导致在充电/放电过程中对锂嵌入更具柔性的更小、更薄的SEI层。此外,我们发现石墨表面不同氧官能团的存在决定了SEI中的低聚产物和LiF形成机制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验