École Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland.
J Chem Theory Comput. 2018 Jun 12;14(6):2834-2842. doi: 10.1021/acs.jctc.7b01189. Epub 2018 May 4.
We present here our implementation of a time-reversible, multiple time step (MTS) method for full QM and hybrid QM/MM Born-Oppenheimer molecular dynamics simulations. The method relies on a fully flexible combination of electronic structure methods, from density functional theory to wave function-based quantum chemistry methods, to evaluate the nuclear forces in the reference and in the correction steps. The possibility of combining different electronic structure methods is based on the observation that exchange and correlation terms only contribute to low frequency modes of nuclear forces. We show how a pair of low/high level electronic structure methods that individually would lead to very different system properties can be efficiently combined in the reference and correction steps of this MTS scheme. The current MTS implementation makes it possible to perform highly accurate ab initio molecular dynamics simulations at reduced computational cost. Stable and accurate trajectories were obtained with time steps of several femtoseconds, similar to and even exceeding the ones usually adopted in classical molecular dynamics, in particular when using a generalized Langevin stochastic thermostat. Compared to the standard Velocity Verlet integration, the present MTS scheme allows for a 5- to 6-fold overall speedup, at an unaltered level of accuracy.
我们在此展示了一种时间可逆、多时间步长(MTS)方法在全量子力学和混合量子力学/分子力学 Born-Oppenheimer 分子动力学模拟中的应用。该方法依赖于完全灵活的电子结构方法组合,从密度泛函理论到基于波函数的量子化学方法,以评估参考和校正步骤中的核力。不同电子结构方法的组合可能性基于以下观察结果:交换和相关项仅对核力的低频模式有贡献。我们展示了如何在这种 MTS 方案的参考和校正步骤中有效地组合一对低/高水准的电子结构方法,即使它们单独使用也会导致非常不同的系统性质。目前的 MTS 实现使得以降低的计算成本进行高精度从头分子动力学模拟成为可能。使用几飞秒的时间步长获得了稳定且准确的轨迹,与经典分子动力学通常采用的时间步长相仿,甚至超过,特别是在使用广义 Langevin 随机恒温器时。与标准的速度-Verlet 积分相比,当前的 MTS 方案允许以不变的精度将整体速度提高 5 到 6 倍。