Cell Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA; BCMB Allied Program, Weill Cornell Medical College, New York, NY 10065, USA.
Cell Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA.
Dev Cell. 2020 Nov 9;55(3):289-297.e4. doi: 10.1016/j.devcel.2020.08.008. Epub 2020 Sep 10.
Lysosome function is essential for cellular homeostasis, but quality-control mechanisms that maintain healthy lysosomes remain poorly characterized. Here, we developed a method to measure lysosome turnover and use this to identify a selective mechanism of membrane degradation that involves lipidation of the autophagy protein LC3 onto lysosomal membranes and the formation of intraluminal vesicles through microautophagy. This mechanism is induced in response to metabolic stress resulting from glucose starvation or by treatment with pharmacological agents that induce osmotic stress on lysosomes. Cells lacking ATG5, an essential component of the LC3 lipidation machinery, show reduced ability to regulate lysosome size and degradative capacity in response to activation of this mechanism. These findings identify a selective mechanism of lysosome membrane turnover that is induced by stress and uncover a function for LC3 lipidation in regulating lysosome size and activity through microautophagy.
溶酶体功能对于细胞内稳态至关重要,但维持健康溶酶体的质量控制机制仍知之甚少。在这里,我们开发了一种测量溶酶体周转率的方法,并利用该方法鉴定了一种选择性的膜降解机制,该机制涉及自噬蛋白 LC3 脂质化到溶酶体膜上,以及通过微自噬形成腔内囊泡。这种机制是响应葡萄糖饥饿或用诱导溶酶体渗透胁迫的药物处理引起的代谢应激而诱导的。缺乏 LC3 脂质化机制的必需成分 ATG5 的细胞在响应该机制的激活时,调节溶酶体大小和降解能力的能力降低。这些发现鉴定了一种应激诱导的溶酶体膜周转率的选择性机制,并揭示了 LC3 脂质化通过微自噬调节溶酶体大小和活性的功能。