Department of Biology, McGill University, 3649 Sir William Osler, Montreal, QC H3G 0B1, Canada.
Department of Biology, McGill University, 3649 Sir William Osler, Montreal, QC H3G 0B1, Canada.
Mol Cell. 2020 Oct 1;80(1):114-126.e8. doi: 10.1016/j.molcel.2020.08.014. Epub 2020 Sep 10.
DNA replication is carried out by a multi-protein machine called the replisome. In Saccharomyces cerevisiae, the replisome is composed of over 30 different proteins arranged into multiple subassemblies, each performing distinct activities. Synchrony of these activities is required for efficient replication and preservation of genomic integrity. How this is achieved is particularly puzzling at the lagging strand, where current models of the replisome architecture propose turnover of the canonical lagging strand polymerase, Pol δ, at every cycle of Okazaki fragment synthesis. Here, we established single-molecule fluorescence microscopy protocols to study the binding kinetics of individual replisome subunits in live S. cerevisiae. Our results show long residence times for most subunits at the active replisome, supporting a model where all subassemblies bind tightly and work in a coordinated manner for extended periods, including Pol δ, redefining the architecture of the active eukaryotic replisome.
DNA 复制是由一种称为复制体的多蛋白机器进行的。在酿酒酵母中,复制体由 30 多种不同的蛋白质组成,这些蛋白质排列成多个亚基,每个亚基执行不同的功能。这些活动的同步性对于有效复制和基因组完整性的保护是必需的。在滞后链上,如何实现这一点尤其令人困惑,目前的复制体结构模型提出,在每一轮冈崎片段合成中,规范的滞后链聚合酶 Pol δ 都会发生周转。在这里,我们建立了单分子荧光显微镜方案,以研究活酿酒酵母中单个复制体亚基的结合动力学。我们的结果表明,大多数亚基在活跃的复制体上停留时间较长,这支持了一种模型,即所有亚基紧密结合,并以协调的方式长时间工作,包括 Pol δ,重新定义了活跃的真核复制体的结构。