Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China.
Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China.
Environ Res. 2023 Jan 1;216(Pt 1):114542. doi: 10.1016/j.envres.2022.114542. Epub 2022 Oct 10.
The development of high-performance, strong-durability and low-cost cathode catalysts toward oxygen reduction reaction (ORR) is of great significance for microbial fuel cells (MFCs). In this study, a series of bimetallic catalysts were synthesized by pyrolyzing a mixture of g-CN and Fe, Co-tannic complex with various Fe/Co atomic ratios. The initial Fe/Co atomic ratio (3.5:0.5, 3:1, 2:2, 1:3) could regulate the electronic state, which effectively promoted the intrinsic electrocatalytic ORR activity. The alloy metal particles and metal-N sites presented on the catalyst surface. In addition, N-doped carbon interconnected network consisting of graphene-like and bamboo-like carbon nanotube structure derived from g-CN provided more accessible active sites. The resultant FeCo catalyst calcined at 700 °C (FeCo-700) exhibited high catalytic performance in neutral electrolyte with a half-wave potential of 0.661 V, exceeding that of the commercial Pt/C (0.6 V). As expected, the single chamber microbial fuel cell (SCMFC) with 1 mg/cm loading of FeCo-700 catalyst as the cathode catalyst afforded a maximum power density of 1425 mW/m, which was 10.5% higher than commercial Pt/C catalyst with the same loading (1290 mW/m) and comparable to the Pt/C catalyst with 2.5 times higher loading ( 1430 mW/m). Additionally, the FeCo-700 also displayed better long-term stability over 1100 h than the Pt/C. This work provides an effective strategy for regulating the surface electronic state in the bimetallic electro-catalyst.
制备高性能、强耐久性和低成本的阴极催化剂对于微生物燃料电池(MFC)至关重要。在这项研究中,通过热解包含 g-CN 和 Fe、Co 与鞣酸复合物的混合物,制备了一系列双金属催化剂,其中具有不同 Fe/Co 原子比。初始 Fe/Co 原子比(3.5:0.5、3:1、2:2、1:3)可以调节电子态,从而有效促进了内在电催化 ORR 活性。催化剂表面存在合金金属颗粒和金属-N 位。此外,g-CN 衍生的氮掺杂碳互联网络由类石墨烯和竹节状碳纳米管结构组成,提供了更多的可及活性位。在 700°C 下煅烧得到的 FeCo 催化剂(FeCo-700)在中性电解质中表现出高催化性能,半波电位为 0.661 V,超过了商业 Pt/C(0.6 V)。不出所料,在单室微生物燃料电池(SCMFC)中,以 1 mg/cm 的负载量使用 FeCo-700 作为阴极催化剂,可提供 1425 mW/m 的最大功率密度,比相同负载量的商业 Pt/C 催化剂(1290 mW/m)高 10.5%,与负载量高 2.5 倍的 Pt/C 催化剂(1430 mW/m)相当。此外,与 Pt/C 相比,FeCo-700 在 1100 小时以上的长期稳定性也更好。这项工作为调节双金属电催化剂的表面电子态提供了一种有效策略。