Suppr超能文献

角膜细胞力学。

Keratocyte mechanobiology.

机构信息

Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.

Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA; Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.

出版信息

Exp Eye Res. 2020 Nov;200:108228. doi: 10.1016/j.exer.2020.108228. Epub 2020 Sep 10.

Abstract

In vivo, corneal keratocytes reside within a complex 3D extracellular matrix (ECM) consisting of highly aligned collagen lamellae, growth factors, and other extracellular matrix components, and are subjected to various mechanical stimuli during developmental morphogenesis, fluctuations in intraocular pressure, and wound healing. The process by which keratocytes convert changes in mechanical stimuli (e.g. local topography, applied force, ECM stiffness) into biochemical signaling is known as mechanotransduction. Activation of the various mechanotransductive pathways can produce changes in cell migration, proliferation, and differentiation. Here we review how corneal keratocytes respond to and integrate different biochemical and biophysical factors. We first highlight how growth factors and other cytokines regulate the activity of Rho GTPases, cytoskeletal remodeling, and ultimately the mechanical phenotype of keratocytes. We then discuss how changes in the mechanical properties of the ECM have been shown to regulate keratocyte behavior in sophisticated 2D and 3D experimental models of the corneal microenvironment. Finally, we discuss how ECM topography and protein composition can modulate cell phenotypes, and review the different methods of fabricating in vitro mimics of corneal ECM topography, novel approaches for examining topographical effects in vivo, and the impact of different ECM glycoproteins and proteoglycans on keratocyte behavior.

摘要

在体内,角膜基质细胞存在于由高度排列的胶原板层、生长因子和其他细胞外基质成分组成的复杂 3D 细胞外基质 (ECM) 中,并且在发育形态发生、眼内压波动和伤口愈合过程中受到各种机械刺激。基质细胞将机械刺激(例如局部形貌、施加的力、ECM 硬度)的变化转化为生化信号的过程称为机械转导。各种机械转导途径的激活可导致细胞迁移、增殖和分化的变化。在这里,我们回顾了角膜基质细胞如何响应和整合不同的生化和生物物理因素。我们首先强调了生长因子和其他细胞因子如何调节 Rho GTPases 的活性、细胞骨架重塑,最终调节基质细胞的机械表型。然后,我们讨论了 ECM 力学性质的变化如何在角膜微环境的复杂 2D 和 3D 实验模型中调节基质细胞的行为。最后,我们讨论了 ECM 形貌和蛋白质组成如何调节细胞表型,并回顾了体外模拟角膜 ECM 形貌的不同方法、体内研究形貌影响的新方法以及不同 ECM 糖蛋白和蛋白聚糖对基质细胞行为的影响。

相似文献

1
Keratocyte mechanobiology.
Exp Eye Res. 2020 Nov;200:108228. doi: 10.1016/j.exer.2020.108228. Epub 2020 Sep 10.
2
Mechanical interactions and crosstalk between corneal keratocytes and the extracellular matrix.
Exp Eye Res. 2015 Apr;133:49-57. doi: 10.1016/j.exer.2014.09.003.
3
Growth factor regulation of corneal keratocyte mechanical phenotypes in 3-D collagen matrices.
Invest Ophthalmol Vis Sci. 2012 Mar 1;53(3):1077-86. doi: 10.1167/iovs.11-8609. Print 2012 Mar.
4
ECM stiffness modulates the proliferation but not the motility of primary corneal keratocytes in response to PDGF-BB.
Exp Eye Res. 2022 Jul;220:109112. doi: 10.1016/j.exer.2022.109112. Epub 2022 May 18.
5
MMP regulation of corneal keratocyte motility and mechanics in 3-D collagen matrices.
Exp Eye Res. 2014 Apr;121:147-60. doi: 10.1016/j.exer.2014.02.002. Epub 2014 Feb 14.
8
Growth factor regulation of corneal keratocyte differentiation and migration in compressed collagen matrices.
Invest Ophthalmol Vis Sci. 2010 Feb;51(2):864-75. doi: 10.1167/iovs.09-4200. Epub 2009 Oct 8.
9
The effect of growth factor supplementation on corneal stromal cell phenotype in vitro using a serum-free media.
Exp Eye Res. 2016 Oct;151:26-37. doi: 10.1016/j.exer.2016.07.015. Epub 2016 Jul 22.

引用本文的文献

1
Corneal Keratocytes, Fibroblasts, and Myofibroblasts Exhibit Distinct Transcriptional Profiles In Vitro.
Invest Ophthalmol Vis Sci. 2025 Mar 3;66(3):28. doi: 10.1167/iovs.66.3.28.
2
Focus on seed cells: stem cells in 3D bioprinting of corneal grafts.
Front Bioeng Biotechnol. 2024 Jul 10;12:1423864. doi: 10.3389/fbioe.2024.1423864. eCollection 2024.
4
Squishy matters - Corneal mechanobiology in health and disease.
Prog Retin Eye Res. 2024 Mar;99:101234. doi: 10.1016/j.preteyeres.2023.101234. Epub 2024 Jan 2.
5
Extracellular-Matrix Mechanics Regulate the Ocular Physiological and Pathological Activities.
J Ophthalmol. 2023 Jul 22;2023:7626920. doi: 10.1155/2023/7626920. eCollection 2023.
7
The impact of UV cross-linking on corneal stromal cell migration, differentiation and patterning.
Exp Eye Res. 2023 Aug;233:109523. doi: 10.1016/j.exer.2023.109523. Epub 2023 Jun 2.
8
Collagen Crosslinking for Keratoconus: Cellular Signaling Mechanisms.
Biomolecules. 2023 Apr 20;13(4):696. doi: 10.3390/biom13040696.
10
ECM stiffness modulates the proliferation but not the motility of primary corneal keratocytes in response to PDGF-BB.
Exp Eye Res. 2022 Jul;220:109112. doi: 10.1016/j.exer.2022.109112. Epub 2022 May 18.

本文引用的文献

1
ECM Stiffness Controls the Activation and Contractility of Corneal Keratocytes in Response to TGF-β1.
Biophys J. 2020 Nov 3;119(9):1865-1877. doi: 10.1016/j.bpj.2020.08.040. Epub 2020 Sep 23.
2
Cooperative roles of PAK1 and filamin A in regulation of vimentin assembly and cell extension formation.
Biochim Biophys Acta Mol Cell Res. 2020 Sep;1867(9):118739. doi: 10.1016/j.bbamcr.2020.118739. Epub 2020 May 7.
3
A high-throughput microfluidic method for fabricating aligned collagen fibrils to study Keratocyte behavior.
Biomed Microdevices. 2019 Nov 18;21(4):99. doi: 10.1007/s10544-019-0436-3.
4
Loss of Vimentin Enhances Cell Motility through Small Confining Spaces.
Small. 2019 Dec;15(50):e1903180. doi: 10.1002/smll.201903180. Epub 2019 Nov 13.
5
Cell-independent matrix configuration in early corneal development.
Exp Eye Res. 2019 Oct;187:107772. doi: 10.1016/j.exer.2019.107772. Epub 2019 Aug 21.
6
YAP and TAZ are distinct effectors of corneal myofibroblast transformation.
Exp Eye Res. 2019 Mar;180:102-109. doi: 10.1016/j.exer.2018.12.009. Epub 2018 Dec 19.
7
Control of adhesion and protrusion in cell migration by Rho GTPases.
Curr Opin Cell Biol. 2019 Feb;56:64-70. doi: 10.1016/j.ceb.2018.09.003. Epub 2018 Oct 3.
9
Modulation of human corneal stromal cell differentiation by hepatocyte growth factor and substratum compliance.
Exp Eye Res. 2018 Nov;176:235-242. doi: 10.1016/j.exer.2018.09.001. Epub 2018 Sep 5.
10
Assessment of Corneal Stromal Remodeling and Regeneration after Photorefractive Keratectomy.
Sci Rep. 2018 Aug 22;8(1):12580. doi: 10.1038/s41598-018-30372-2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验