Universidade Tecnológica Federal do Paraná (UTFPR), Programa de Pós-Graduação em Agronomia (PPGAG) - câmpus Pato Branco, PR, Brazil.
Universidade Tecnológica Federal do Paraná (UTFPR), Programa de Pós-Graduação em Engenharia Elétrica (PPGEE) - câmpus Pato Branco, PR, Brazil.
Spectrochim Acta A Mol Biomol Spectrosc. 2021 Jan 15;245:118834. doi: 10.1016/j.saa.2020.118834. Epub 2020 Aug 26.
Using near-infrared (NIR) spectroscopy for poultry litter characterization can be a rapid, non-destructive, and low-cost alternative. This study aims to estimate the C, N, P, and K content in poultry litter samples using for first time NIR spectroscopy. For these purposes, the building models were carried out using Partial Least Squares (PLS) and Support Vector Machines (SVM) methods. A total of 160 litter samples were analyzed in poultry houses of different rearing systems, seeking the highest possible variability in their chemical composition. NIR spectroscopy, combined with PLS and SVM methods, is an alternative method for non-destructive C, N, P, and K determination in poultry samples. The regression models using SVM provide better accuracy for all elements, laying the basis for the nonlinear regression approach's application. The K determination on poultry litter using NIR was possible only by the SVM model (R = 0.8620 and RPD = 2.7330). Conclusively, the predictive ability was improved using the SVM method.
使用近红外(NIR)光谱法对家禽粪便进行特征分析是一种快速、无损、低成本的替代方法。本研究旨在首次使用近红外光谱法估算家禽粪便样本中的 C、N、P 和 K 含量。为此,使用偏最小二乘法(PLS)和支持向量机(SVM)方法建立模型。共分析了来自不同饲养系统家禽舍中的 160 个粪便样本,以寻找其化学成分尽可能大的可变性。近红外光谱法与 PLS 和 SVM 方法相结合,是一种用于非破坏性测定家禽样品中 C、N、P 和 K 的替代方法。使用 SVM 的回归模型为所有元素提供了更好的准确性,为非线性回归方法的应用奠定了基础。仅通过 SVM 模型(R = 0.8620 和 RPD = 2.7330)才有可能使用 NIR 法测定家禽粪便中的 K。总之,使用 SVM 方法提高了预测能力。