State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875, China.
State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875, China; Department of Geography, San Diego State University, 5500 Campanile Dr., San Diego, CA 92182-4493, USA.
Environ Int. 2020 Nov;144:106060. doi: 10.1016/j.envint.2020.106060. Epub 2020 Sep 10.
Particulate matter with a mass concentration of particles with a diameter less than 2.5 μm (PM) is a key air quality parameter. A real-time knowledge of PM is highly valuable for lowering the risk of detrimental impacts on human health. To achieve this goal, we developed a new deep learning model-EntityDenseNet to retrieve ground-level PM concentrations from Himawari-8, a geostationary satellite providing high temporal resolution data. In contrast to the traditional machine learning model, the new model has the capability to automatically extract PM spatio-temporal characteristics. Validation across mainland China demonstrates that hourly, daily and monthly PM retrievals contain the root-mean-square errors of 26.85, 25.3, and 15.34 μg/m, respectively. In addition to a higher accuracy achievement when compared with various machine learning inversion methods (backpropagation neural network, extreme gradient boosting, light gradient boosting machine, and random forest), EntityDenseNet can "peek inside the black box" to extract the spatio-temporal features of PM. This model can show, for example, that PM levels in the coastal city of Tianjin were more influenced by air from Hebei than Beijing. Further, EntityDenseNet can still extract the seasonal characteristics that demonstrate that PM is more closely related within three month groups over mainland China: (1) December, January and February, (2) March, April and May, (3) July, August and September, even without meteorological information. EntityDenseNet has the ability to obtain high temporal resolution satellite-based PM data over China in real-time. This could act as an important tool to improve our understanding of PM spatio-temporal features.
颗粒物的质量浓度是指直径小于 2.5μm(PM)的颗粒物浓度,是空气质量的一个关键参数。实时了解 PM 对降低其对人类健康的不利影响的风险具有重要意义。为了实现这一目标,我们开发了一种新的深度学习模型-EntityDenseNet,该模型可以从提供高时间分辨率数据的静止气象卫星 Himawari-8 中获取地面 PM 浓度。与传统的机器学习模型不同,新模型具有自动提取 PM 时空特征的能力。在中国大陆的验证结果表明,每小时、每日和每月的 PM 反演的均方根误差分别为 26.85、25.3 和 15.34μg/m。与各种机器学习反演方法(反向传播神经网络、极端梯度提升、轻梯度提升机和随机森林)相比,EntityDenseNet 不仅具有更高的精度,而且可以“窥视黑箱”,提取 PM 的时空特征。例如,该模型可以显示天津沿海城市的 PM 水平更多地受到来自河北的空气影响,而不是来自北京的空气影响。此外,EntityDenseNet 仍然可以提取季节性特征,表明在中国内陆地区,PM 在三个月的时间内更为密切相关:(1)12 月、1 月和 2 月;(2)3 月、4 月和 5 月;(3)7 月、8 月和 9 月,即使没有气象信息。EntityDenseNet 具有实时获取中国高时间分辨率卫星 PM 数据的能力。这可以成为提高我们对 PM 时空特征理解的重要工具。