Sorek-Hamer Meytar, von Pohle Michael, Sahasrabhojanee Adwait, Asanjan Ata Akbari, Deardorff Emily, Suel Esra, Lingenfelter Violet, Das Kamalika, Oza Nikunj, Ezzati Majid, Brauer Michael
Universities Space Research Association (USRA), Mountain View, CA.
NASA Ames Research Center, Mountain View, CA.
Atmosphere (Basel). 2022 Apr 27;13(5):696. doi: 10.3390/atmos13050696.
High-spatial-resolution air quality (AQ) mapping is important for identifying pollution sources to facilitate local action. Some of the most populated cities in the world are not equipped with the infrastructure required to monitor AQ levels on the ground and must rely on other sources, like satellite derived estimates, to monitor AQ. Current satellite-data-based models provide AQ mapping on a kilometer scale at best. In this study we focus on producing hundred-meter-scale AQ maps for urban environments in developed cities. We examined the feasibility of an image-based object-detection analysis approach using very high-spatial-resolution (2.5 m) commercial satellite imagery. We fed the satellite imagery to a deep neural network (DNN) to learn the association between visual urban features and air pollutants. The developed model, which solely uses satellite imagery, was tested and evaluated using both ground monitoring observations and land-use regression modeled PM and NO concentrations over London, Vancouver (BC), Los Angeles, and New York City. The results demonstrate a low error with a total RMSE < 2 µg/m and highlight the contribution of specific urban features, such as green areas and roads, to continuous hundred-meter-scale AQ estimation. This approach offers promise for scaling to global applications in developed and developing urban environments. Further analysis on domain transferability will enable application of a parsimonious model based merely on satellite images to create hundred-meter-scale AQ maps in developing cities, where current and historical ground data is limited.
高空间分辨率空气质量(AQ)制图对于识别污染源以促进地方行动至关重要。世界上一些人口最密集的城市没有配备在地面监测AQ水平所需的基础设施,必须依靠其他来源,如卫星衍生估计值,来监测AQ。当前基于卫星数据的模型充其量只能在公里尺度上提供AQ制图。在本研究中,我们专注于为发达城市的城市环境制作百米尺度的AQ地图。我们研究了使用超高空间分辨率(2.5米)商业卫星图像的基于图像的目标检测分析方法的可行性。我们将卫星图像输入深度神经网络(DNN),以了解城市视觉特征与空气污染物之间的关联。所开发的仅使用卫星图像的模型,使用地面监测观测数据以及土地利用回归模型模拟的伦敦、温哥华(不列颠哥伦比亚省)、洛杉矶和纽约市的PM和NO浓度进行了测试和评估。结果表明误差较低,总RMSE < 2 µg/m,并突出了特定城市特征(如绿地和道路)对连续百米尺度AQ估计的贡献。这种方法有望扩展到发达和发展中城市环境的全球应用。对域可转移性的进一步分析将使仅基于卫星图像的简约模型能够应用于发展中城市,在这些城市中,当前和历史地面数据有限,从而创建百米尺度的AQ地图。