Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN, USA.
Division of Addiction Sciences, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA.
Clin Trials. 2021 Feb;18(1):28-38. doi: 10.1177/1740774520956949. Epub 2020 Sep 14.
Participant noncompliance, in which participants do not follow their assigned treatment protocol, has long complicated the interpretation of randomized clinical trials. No gold standard has been identified for detecting noncompliance, but in some trials participants' biomarkers can provide objective information that suggests exposure to non-study treatments. However, existing methods are limited to retrospectively detecting noncompliance at a single time point based on a single biomarker measurement. We propose a novel method that can leverage participants' full biomarker history to detect noncompliance across multiple time points. Conditional on longitudinal biomarker data, our method can estimate the probability of compliance at (1) a single time point of the trial, (2) all time points, and (3) a future time point.
Across time points, we model the biomarker as a mixture density with (latent) components corresponding to longitudinal patterns of compliance. To estimate the mixture density, we fit mixed effects models for both compliance and the biomarker. We use the mixture density to derive compliance probabilities that condition on the longitudinal biomarker data. We evaluate our compliance probabilities by simulation and apply them to a trial in which current smokers were asked to only smoke low nicotine study cigarettes (Center for the Evaluation of Nicotine in Cigarettes Project 1 Study 2). In the simulation, we investigated three different effects of compliance on the biomarker, as well as the effect of misspecification of the covariance structures. We compared probability estimators (1) and (2) to those that ignore the longitudinal correlation in the data according to area under the receiver operating characteristic curve. We evaluated estimator (3) by plotting its calibration lines. For Center for the Evaluation of Nicotine in Cigarettes Project 1 Study 2, we compared estimators (1) and (3) to a probability estimator of compliance at the last time point that ignores the longitudinal correlation.
In the simulation, for both compliance at the last time point and at all time points, conditioning on the longitudinal biomarker data uniformly raised area under the receiver operating characteristic curve across all three compliance effect scenarios. The gains in area under the receiver operating characteristic curve were smaller under misspecification. The calibration lines for the prediction of compliance closely followed 45°, though with additional variability under misspecification. For compliance at the last time point of Center for the Evaluation of Nicotine in Cigarettes Project 1 Study 2, conditioning on participants' full biomarker history boosted area under the receiver operating characteristic curve by three percentage points. The prediction probabilities somewhat accurately approximated the non-longitudinal compliance probabilities.
Compared to existing methods that only use a single biomarker measurement, our method can account for the longitudinal correlation in the biomarker and compliance to more accurately identify noncompliant participants. Our method can also use participants' biomarker history to predict compliance at a future time point.
参与者不遵守规定(即参与者不遵循其指定的治疗方案)长期以来一直使随机临床试验的解释变得复杂。虽然没有确定检测不遵守规定的黄金标准,但在某些试验中,参与者的生物标志物可以提供表明接触非研究治疗的客观信息。然而,现有的方法仅限于基于单次生物标志物测量在单个时间点上回顾性地检测不遵守规定的情况。我们提出了一种新方法,可以利用参与者的全部生物标志物历史在多个时间点上检测不遵守规定的情况。在有纵向生物标志物数据的情况下,我们的方法可以估计(1)试验中的单个时间点、(2)所有时间点和(3)未来时间点的合规概率。
在不同的时间点,我们将生物标志物建模为混合密度,其中(潜在)成分对应于合规的纵向模式。为了估计混合密度,我们为合规性和生物标志物拟合混合效应模型。我们使用混合密度来推导出基于纵向生物标志物数据的合规概率。我们通过模拟评估我们的合规概率,并将其应用于一项当前吸烟者被要求仅吸低尼古丁研究香烟的试验(尼古丁在香烟中评估中心项目 1 研究 2)。在模拟中,我们研究了三种不同的合规性对生物标志物的影响,以及协方差结构指定不正确的影响。我们根据接收器操作特性曲线下的面积将概率估计器(1)和(2)与那些忽略数据中纵向相关性的估计器进行比较。我们通过绘制校准线来评估估计器(3)。对于尼古丁在香烟中评估中心项目 1 研究 2,我们将估计器(1)和(3)与忽略纵向相关性的最后时间点的合规概率估计器进行了比较。
在模拟中,对于最后时间点和所有时间点的合规性,根据纵向生物标志物数据进行条件处理,在所有三种合规性效果情况下都均匀提高了接收器操作特性曲线下的面积。在协方差结构指定不正确的情况下,接收者操作特性曲线下的面积增益较小。合规性预测的校准线非常接近 45°,尽管在指定不正确的情况下会有额外的可变性。对于尼古丁在香烟中评估中心项目 1 研究 2 的最后时间点的合规性,根据参与者的全部生物标志物历史进行条件处理,将接收器操作特性曲线下的面积提高了三个百分点。预测概率在一定程度上准确地逼近了非纵向合规概率。
与仅使用单个生物标志物测量的现有方法相比,我们的方法可以考虑生物标志物和合规性的纵向相关性,以更准确地识别不遵守规定的参与者。我们的方法还可以使用参与者的生物标志物历史来预测未来时间点的合规性。