Babanezhad Meisam, Zabihi Samyar, Taghvaie Nakhjiri Ali, Marjani Azam, Behroyan Iman, Shirazian Saeed
Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam.
Faculty of Electrical-Electronic Engineering, Duy Tan University, Da Nang 550000, Vietnam.
ACS Omega. 2020 Aug 25;5(35):22091-22098. doi: 10.1021/acsomega.0c02121. eCollection 2020 Sep 8.
A combination of a fuzzy inference system (FIS) and a differential evolution (DE) algorithm, known as the differential evolution-based fuzzy inference system (DEFIS), is developed for the prediction of natural heat transfer in Cu-water nanofluid within a cavity. In the development of the hybrid model, the DE algorithm is used for the training process of FIS. For this purpose, first, the case study is simulated using the computational fluid dynamic (CFD) method. The CFD outputs, including velocity in the -direction, the temperature of the nanofluid, and the nanoparticle content (), are employed for the learning process of the DEFIS model. By choosing the optimum number of inputs and the number of population, the underlying DEFIS variable parameters are studied. After reaching the high value of DEFIS intelligence, in the learning step, a variety of values (e.g., 0.5, 1, and 2) are reviewed. For the full intelligence of DEFIS, the velocity of the nanofluid is predicted in further nodes of the cavity domain. Finally, the velocity of the nanofluid is predicted by using the data at = 0.15, which are absent in the DEFIS process.
一种将模糊推理系统(FIS)和差分进化(DE)算法相结合的方法,即基于差分进化的模糊推理系统(DEFIS),被用于预测腔内铜 - 水纳米流体的自然热传递。在混合模型的开发过程中,DE算法用于FIS的训练过程。为此,首先使用计算流体动力学(CFD)方法对案例进行模拟。CFD输出,包括x方向的速度、纳米流体的温度和纳米颗粒含量(φ),被用于DEFIS模型的学习过程。通过选择最佳输入数量和种群数量,对DEFIS的基础可变参数进行了研究。在达到DEFIS智能的高值后,在学习步骤中,对各种α值(例如0.5、1和2)进行了审查。为了实现DEFIS的完全智能,在腔域的更多节点中预测纳米流体的速度。最后,利用在α = 0.15时的数据预测纳米流体的速度,这些数据在DEFIS过程中是缺失的。