Suppr超能文献

评价两个 S 型隶属度函数(psigmf)的乘积作为 ANFIS 隶属度函数在预测纳米流体温度方面的应用。

Evaluation of product of two sigmoidal membership functions (psigmf) as an ANFIS membership function for prediction of nanofluid temperature.

机构信息

Institute of Research and Development, Duy Tan University, Da Nang, 550000, Vietnam.

Faculty of Electrical - Electronic Engineering, Duy Tan University, Da Nang, 550000, Vietnam.

出版信息

Sci Rep. 2020 Dec 18;10(1):22337. doi: 10.1038/s41598-020-79293-z.

Abstract

A nanofluid containing water and nanoparticles made of copper (Cu) inside a cavity with square shape is simulated utilizing the computational fluid dynamics (CFD) approach. The nanoparticles made up 15% of the nanofluid. By performing the simulation, the CFD output is characterized by the coordinates in the x, y, nanofluid temperature, and velocity in the y-direction that these outputs are obtained for different physical time iterations. Moreover, the CFD outputs are examined by one of the artificial techniques, i.e. adaptive network-based fuzzy inference system (ANFIS). For this purpose, the data was clustered via grid partition clustering, and the type of membership functions (MFs) was chosen product of two sigmoidal membership functions (psigmf). After reaching 99.9% of intelligence in ANFIS, the nanofluid temperature is predicted for the entire data, which are included in the learning processes. The results showed that the method of ANFIS can predict the thermal properties in different physical times at different computing points without having a training background at those times. Additionally, this study shows that with three membership functions at each input, the model's accuracy is higher than four functions.

摘要

利用计算流体动力学 (CFD) 方法对内部含有铜 (Cu) 纳米粒子的水基纳米流体在方形腔体内进行模拟。纳米粒子占纳米流体的 15%。通过模拟,可以得到 CFD 输出的 x、y 坐标、纳米流体温度和 y 方向的速度,这些输出是针对不同的物理时间迭代得到的。此外,还通过一种人工技术,即自适应网络模糊推理系统 (ANFIS) 对 CFD 输出进行了检查。为此,通过网格分区聚类对数据进行了聚类,并选择了双 sigmoidal 隶属函数 (psigmf) 的乘积作为隶属函数 (MFs) 的类型。在 ANFIS 达到 99.9%的智能度后,对整个学习过程中包含的所有数据进行了纳米流体温度的预测。结果表明,ANFIS 方法可以在不同的物理时间和不同的计算点预测热特性,而无需在这些时间点进行训练。此外,本研究表明,对于每个输入使用三个隶属函数,模型的准确性高于四个函数。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/89f0/7749144/502a6a19a351/41598_2020_79293_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验