Suppr超能文献

儿童癌症幸存者研究中与DNA损伤反应和临床辐射敏感综合征基因罕见变异相关的后续肿瘤风险

Subsequent Neoplasm Risk Associated With Rare Variants in DNA Damage Response and Clinical Radiation Sensitivity Syndrome Genes in the Childhood Cancer Survivor Study.

作者信息

Morton Lindsay M, Karyadi Danielle M, Hartley Stephen W, Frone Megan N, Sampson Joshua N, Howell Rebecca M, Neglia Joseph P, Arnold Michael A, Hicks Belynda D, Jones Kristine, Zhu Bin, Dagnall Casey L, Karlins Eric, Yeager Meredith S, Leisenring Wendy M, Yasui Yutaka, Turcotte Lucie M, Smith Susan A, Weathers Rita E, Miller Jeremy, Sigel Byron S, Merino Diana M, Berrington de Gonzalez Amy, Bhatia Smita, Robison Leslie L, Tucker Margaret A, Armstrong Gregory T, Chanock Stephen J

机构信息

Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD.

Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, TX.

出版信息

JCO Precis Oncol. 2020 Aug 21;4. doi: 10.1200/PO.20.00141. eCollection 2020.

Abstract

PURPOSE

Radiotherapy for childhood cancer is associated with elevated subsequent neoplasm (SN) risk, but the contribution of rare variants in DNA damage response and radiation sensitivity genes to SN risk is unknown.

PATIENTS AND METHODS

We conducted whole-exome sequencing in a cohort of childhood cancer survivors originally diagnosed during 1970 to 1986 (mean follow-up, 32.7 years), with reconstruction of doses to body regions from radiotherapy records. We identified patients who developed SN types previously reported to be related to radiotherapy (RT-SNs; eg, basal cell carcinoma [BCC], breast cancer, meningioma, thyroid cancer, sarcoma) and matched controls (sex, childhood cancer type/diagnosis, age, SN location, radiation dose, survival). Conditional logistic regression assessed SN risk associated with potentially protein-damaging rare variants (SnpEff, ClinVar) in 476 DNA damage response or radiation sensitivity genes with exact permutation-based values using a Bonferroni-corrected significance threshold of < 8.06 × 10.

RESULTS

Among 5,105 childhood cancer survivors of European descent, 1,108 (21.7%) developed at least 1 RT-SN. Out-of-field RT-SN risk, excluding BCC, was associated with homologous recombination repair (HRR) gene variants (patient cases, 23.2%; controls, 10.8%; odds ratio [OR], 2.6; 95% CI, 1.7 to 3.9; = 4.79 × 10), most notably but nonsignificantly for (patient cases, 4.0%; matched controls, 0.6%; = 9.64 × 10). HRR variants were not associated with likely in/near-field RT-SNs, excluding BCC (patient cases, 12.7%; matched controls, 12.9%; = .92). Irrespective of radiation dose, risk for RT-SNs was also associated with variants (patient cases, 1.8%; controls, 0.4%; = 3.31 × 10), another gene implicated in DNA double-strand break repair.

CONCLUSION

In this large-scale discovery study, we identified novel associations between RT-SN risk after childhood cancer and potentially protein-damaging rare variants in genes involved in DNA double-strand break repair, particularly HRR. With replication, these results could affect screening recommendations for childhood cancer survivors and risk-benefit assessments of treatment approaches.

摘要

目的

儿童癌症放疗与后续肿瘤(SN)风险升高相关,但DNA损伤反应和辐射敏感性基因中的罕见变异对SN风险的影响尚不清楚。

患者与方法

我们对一组1970年至1986年期间首次诊断的儿童癌症幸存者进行了全外显子组测序(平均随访32.7年),并根据放疗记录重建身体各部位的剂量。我们确定了发生先前报道与放疗相关的SN类型(放疗相关SN;如基底细胞癌[BCC]、乳腺癌、脑膜瘤、甲状腺癌、肉瘤)的患者以及匹配的对照组(性别、儿童癌症类型/诊断、年龄、SN位置、辐射剂量、生存情况)。条件逻辑回归评估了476个DNA损伤反应或辐射敏感性基因中与潜在蛋白质损伤罕见变异(SnpEff、ClinVar)相关的SN风险,使用基于精确排列的P值,并采用Bonferroni校正的显著性阈值P<8.06×10⁻⁵。

结果

在5105名欧洲血统的儿童癌症幸存者中,1108名(21.7%)发生了至少1例放疗相关SN。排除BCC后,野外放疗相关SN风险与同源重组修复(HRR)基因变异相关(患者病例组为23.2%;对照组为10.8%;比值比[OR]为2.6;95%置信区间为1.7至3.9;P = 4.79×10⁻³),最显著的是BRCA2(患者病例组为4.0%;匹配对照组为0.6%;P = 9.64×10⁻³),但不具有统计学意义。排除BCC后,HRR变异与可能的近场/场内放疗相关SN无关(患者病例组为12.7%;匹配对照组为12.9%;P = 0.92)。无论辐射剂量如何,放疗相关SN风险也与RAD51变异相关(患者病例组为1.8%;对照组为0.4%;P = 3.31×10⁻²),RAD51是另一个与DNA双链断裂修复有关的基因。

结论

在这项大规模发现研究中,我们确定了儿童癌症后放疗相关SN风险与参与DNA双链断裂修复的基因中潜在蛋白质损伤罕见变异之间的新关联,特别是HRR。通过重复验证,这些结果可能会影响儿童癌症幸存者的筛查建议以及治疗方法的风险效益评估。

相似文献

3
Second neoplasms in survivors of childhood cancer: findings from the Childhood Cancer Survivor Study cohort.
J Clin Oncol. 2009 May 10;27(14):2356-62. doi: 10.1200/JCO.2008.21.1920. Epub 2009 Mar 2.
4
Risk of Subsequent Neoplasms in Childhood Cancer Survivors After Radiation Therapy: A PENTEC Comprehensive Review.
Int J Radiat Oncol Biol Phys. 2024 Jun 1;119(2):640-654. doi: 10.1016/j.ijrobp.2023.07.025. Epub 2023 Sep 29.
5
Radiation-related risk of basal cell carcinoma: a report from the Childhood Cancer Survivor Study.
J Natl Cancer Inst. 2012 Aug 22;104(16):1240-50. doi: 10.1093/jnci/djs298. Epub 2012 Jul 25.
7
Pooled Analysis of Meningioma Risk Following Treatment for Childhood Cancer.
JAMA Oncol. 2022 Dec 1;8(12):1756-1764. doi: 10.1001/jamaoncol.2022.4425.
10
Genetic Risk for Subsequent Neoplasms Among Long-Term Survivors of Childhood Cancer.
J Clin Oncol. 2018 Jul 10;36(20):2078-2087. doi: 10.1200/JCO.2018.77.8589. Epub 2018 May 30.

引用本文的文献

1
Genetic and epigenetic bases of long-term adverse effects of childhood cancer therapy.
Nat Rev Cancer. 2025 Feb;25(2):129-144. doi: 10.1038/s41568-024-00768-6. Epub 2024 Nov 7.
2
Update on Recommendations for Cancer Screening and Surveillance in Children with Genomic Instability Disorders.
Clin Cancer Res. 2024 Nov 15;30(22):5009-5020. doi: 10.1158/1078-0432.CCR-24-1098.
4
Frequency of pathogenic germline variants in pediatric medulloblastoma survivors.
Front Oncol. 2024 Aug 9;14:1441958. doi: 10.3389/fonc.2024.1441958. eCollection 2024.
8
Examination of Genetic Susceptibility in Radiation-Associated Meningioma.
Radiat Res. 2022 Jul 1;198(1):81-88. doi: 10.1667/RADE-21-00035.1.
9
Patient-Level DNA Damage Repair Pathway Profiles and Anti-Tumor Immunity for Gastric Cancer.
Front Immunol. 2022 Jan 10;12:806324. doi: 10.3389/fimmu.2021.806324. eCollection 2021.
10
Possible Mechanisms of Subsequent Neoplasia Development in Childhood Cancer Survivors: A Review.
Cancers (Basel). 2021 Oct 10;13(20):5064. doi: 10.3390/cancers13205064.

本文引用的文献

3
FANCM, RAD1, CHEK1 and TP53I3 act as BRCA-like tumor suppressors and are mutated in hereditary ovarian cancer.
Cancer Genet. 2019 Jun;235-236:57-64. doi: 10.1016/j.cancergen.2019.04.061. Epub 2019 May 9.
4
The genomic landscape of pediatric cancers: Implications for diagnosis and treatment.
Science. 2019 Mar 15;363(6432):1170-1175. doi: 10.1126/science.aaw3535.
5
TRAIP is a master regulator of DNA interstrand crosslink repair.
Nature. 2019 Mar;567(7747):267-272. doi: 10.1038/s41586-019-1002-0. Epub 2019 Mar 6.
6
BRCA Challenge: BRCA Exchange as a global resource for variants in BRCA1 and BRCA2.
PLoS Genet. 2018 Dec 26;14(12):e1007752. doi: 10.1371/journal.pgen.1007752. eCollection 2018 Dec.
8
Polygenic Determinants for Subsequent Breast Cancer Risk in Survivors of Childhood Cancer: The St Jude Lifetime Cohort Study (SJLIFE).
Clin Cancer Res. 2018 Dec 15;24(24):6230-6235. doi: 10.1158/1078-0432.CCR-18-1775. Epub 2018 Oct 26.
9
Risk, Risk Factors, and Surveillance of Subsequent Malignant Neoplasms in Survivors of Childhood Cancer: A Review.
J Clin Oncol. 2018 Jul 20;36(21):2145-2152. doi: 10.1200/JCO.2017.76.7764. Epub 2018 Jun 6.
10
Genetic Risk for Subsequent Neoplasms Among Long-Term Survivors of Childhood Cancer.
J Clin Oncol. 2018 Jul 10;36(20):2078-2087. doi: 10.1200/JCO.2018.77.8589. Epub 2018 May 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验