Department of Molecular, Cellular, and Developmental Biology University of Colorado Boulder CO.
BioFrontiers Institute University of Colorado Boulder CO.
J Am Heart Assoc. 2020 Oct 20;9(19):e017025. doi: 10.1161/JAHA.120.017025. Epub 2020 Sep 13.
Background Cardiac fibroblasts (CFs) have the ability to sense stiffness changes and respond to biochemical cues to modulate their states as either quiescent or activated myofibroblasts. Given the potential for secretion of bioactive molecules to modulate the cardiac microenvironment, we sought to determine how the CF secretome changes with matrix stiffness and biochemical cues and how this affects cardiac myocytes via paracrine signaling. Methods and Results Myofibroblast activation was modulated in vitro by combining stiffness cues with TGFβ1 (transforming growth factor β 1) treatment using engineered poly (ethylene glycol) hydrogels, and in vivo with isoproterenol treatment. Stiffness, TGFβ1, and isoproterenol treatment increased AKT (protein kinase B) phosphorylation, indicating that this pathway may be central to myofibroblast activation regardless of the treatment. Although activation of AKT was shared, different activating cues had distinct effects on downstream cytokine secretion, indicating that not all activated myofibroblasts share the same secretome. To test the effect of cytokines present in the CF secretome on paracrine signaling, neonatal rat ventricular cardiomyocytes were treated with CF conditioned media. Conditioned media from myofibroblasts cultured on stiff substrates and activated by TGFβ1 caused hypertrophy, and one of the cytokines in that media was insulin growth factor 1, which is a known mediator of cardiac myocyte hypertrophy. Conclusions Culturing CFs on stiff substrates, treating with TGFβ1, and in vivo treatment with isoproterenol all caused myofibroblast activation. Each cue had distinct effects on the secretome or genes encoding the secretome, but only the secretome of activated myofibroblasts on stiff substrates treated with TGFβ1 caused myocyte hypertrophy, most likely through insulin growth factor 1.
背景 心肌成纤维细胞(CFs)具有感知刚度变化并响应生化信号的能力,从而调节其静止或激活的成纤维肌细胞状态。鉴于分泌生物活性分子以调节心脏微环境的潜力,我们试图确定 CF 分泌组如何随基质刚度和生化信号而变化,以及这种变化如何通过旁分泌信号影响心肌细胞。 方法和结果 使用工程化聚乙二醇水凝胶体外结合刚度线索和 TGFβ1(转化生长因子β 1)处理以及体内异丙肾上腺素处理来调节成纤维肌细胞的激活。刚度、TGFβ1 和异丙肾上腺素处理增加 AKT(蛋白激酶 B)磷酸化,表明该途径可能是成纤维肌细胞激活的核心,无论治疗方式如何。尽管 AKT 的激活是共享的,但不同的激活线索对下游细胞因子分泌有不同的影响,表明并非所有激活的成纤维肌细胞都具有相同的分泌组。为了测试 CF 分泌组中存在的细胞因子对旁分泌信号的影响,用 CF 条件培养基处理新生大鼠心室心肌细胞。在硬基质上培养并通过 TGFβ1 激活的成纤维肌细胞的条件培养基引起肥大,并且该培养基中的一种细胞因子是胰岛素生长因子 1,它是心肌细胞肥大的已知介质。 结论 在硬基质上培养 CFs、用 TGFβ1 处理以及体内用异丙肾上腺素处理都导致成纤维肌细胞激活。每个线索对分泌组或编码分泌组的基因都有不同的影响,但只有在 TGFβ1 处理的硬基质上激活的成纤维肌细胞的分泌组才能引起心肌细胞肥大,这很可能是通过胰岛素生长因子 1 实现的。