Suppr超能文献

基于深度学习模型整合多组学数据进行协同药物组合预测。

Synergistic Drug Combination Prediction by Integrating Multiomics Data in Deep Learning Models.

机构信息

Institute for Informatics (I2), Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, USA.

School of Mathematical Science, Dalian University of Technology, Dalian, Liaoning, China.

出版信息

Methods Mol Biol. 2021;2194:223-238. doi: 10.1007/978-1-0716-0849-4_12.

Abstract

Intrinsic and acquired drug resistance is a major challenge in cancer therapy. Synergistic drug combinations could help to overcome drug resistance. However, the number of possible drug combinations is enormous, and it is infeasible to experimentally screen all drug combinations with limited resources. Therefore, computational models to predict and prioritize effective drug combinations are important for combination therapy discovery. Compared with existing models, we propose a novel deep learning model, AuDNNsynergy, to predict the synergy of pairwise drug combinations by integrating multiomics data. Specifically, three autoencoders are trained using the gene expression, copy number, and genetic mutation data of tumor samples from The Cancer Genome Atlas (TCGA). Then the gene expression, copy number, and mutation of individual cancer cell lines are coded using the three trained autoencoders. The physicochemical features of individual drugs and the encoded omics data of individual cancer cell lines are used as the input features of a deep neural network that predicts the synergy score of given pairwise drug combinations against the specific cancer cell lines. The comparison results showed the proposed AuDNNsynergy model outperforms, specifically in terms of rank correlation metric, four state-of-the-art approaches, namely, DeepSynergy, Gradient Boosting Machines, Random Forests, and Elastic Nets.

摘要

内在和获得性耐药性是癌症治疗的主要挑战。协同药物组合可以帮助克服耐药性。然而,可能的药物组合数量巨大,并且在有限的资源下,实验筛选所有药物组合是不可行的。因此,预测和优先考虑有效药物组合的计算模型对于组合疗法的发现非常重要。与现有模型相比,我们提出了一种新的深度学习模型 AuDNNsynergy,通过整合多组学数据来预测成对药物组合的协同作用。具体来说,使用来自癌症基因组图谱 (TCGA) 的肿瘤样本的基因表达、拷贝数和基因突变数据训练三个自编码器。然后,使用这三个训练好的自编码器对单个癌细胞系的基因表达、拷贝数和突变进行编码。将单个药物的理化特性和单个癌细胞系的编码组学数据用作深度神经网络的输入特征,该网络预测给定的成对药物组合对特定癌细胞系的协同作用得分。比较结果表明,所提出的 AuDNNsynergy 模型表现优于其他四个最先进的方法,特别是在排名相关度量方面,这四个方法分别是 DeepSynergy、梯度提升机、随机森林和弹性网络。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验