Ge XinXin, Lee Yi-Ting, Yeh Shan-Ju
School of Medicine, National Tsing Hua University, Hsinchu, Taiwan.
Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan.
Front Pharmacol. 2025 Jul 14;16:1564339. doi: 10.3389/fphar.2025.1564339. eCollection 2025.
Drug combination therapies have shown promising therapeutic efficacy in complex diseases and demonstrated the potential to reduce drug resistance. However, the vast number of possible drug combinations makes it difficult to screen them all in traditional experiments. Although computational models have been developed to address this challenge, existing methods often struggle to fully capture the complex biological interactions underlying drug synergy, limiting their predictive accuracy and generalization. In this study, we proposed MD-Syn, a computational framework based on a multidimensional feature fusion method and multi-head attention mechanisms. Given drug pair-cell line triplets, MD-Syn considers both one- and two-dimensional feature spaces simultaneously. It consists of a one-dimensional feature embedding module (1D-FEM), a two-dimensional feature embedding module (2D-FEM), and a deep neural network-based classifier for synergistic drug combination prediction. MD-Syn achieved an area under the receiver operating characteristic curve (AUROC) of 0.919 in five-fold cross-validation, outperforming the state-of-the-art methods. Furthermore, MD-Syn showed comparable results across four independent datasets. In addition, the multi-head attention mechanisms not only learn embeddings from different feature aspects but also focus on essential interactive feature elements, improving the interpretability of MD-Syn. In summary, MD-Syn is an interpretable framework to prioritize synergistic drug combination pairs using chemical and cancer cell line gene expression profiles. To facilitate broader community access to this model, we have developed a web portal (https://labyeh104-2.life.nthu.edu.tw/) that enables customized predictions of drug combination synergy effects based on user-specified compounds.
药物联合疗法在复杂疾病中已显示出有前景的治疗效果,并展现出降低耐药性的潜力。然而,大量可能的药物组合使得在传统实验中对它们进行全面筛选变得困难。尽管已经开发了计算模型来应对这一挑战,但现有方法往往难以完全捕捉药物协同作用背后复杂的生物相互作用,限制了它们的预测准确性和泛化能力。在本研究中,我们提出了MD-Syn,这是一个基于多维特征融合方法和多头注意力机制的计算框架。给定药物-细胞系三联体,MD-Syn同时考虑一维和二维特征空间。它由一维特征嵌入模块(1D-FEM)、二维特征嵌入模块(2D-FEM)以及用于协同药物组合预测的基于深度神经网络的分类器组成。MD-Syn在五折交叉验证中实现了受试者工作特征曲线下面积(AUROC)为0.919,优于现有最先进的方法。此外,MD-Syn在四个独立数据集上表现出可比的结果。此外,多头注意力机制不仅从不同特征方面学习嵌入,还关注关键的交互特征元素,提高了MD-Syn的可解释性。总之,MD-Syn是一个可解释的框架,用于利用化学和癌细胞系基因表达谱对协同药物组合对进行优先级排序。为了便于更广泛的社区使用该模型,我们开发了一个门户网站(https://labyeh104-2.life.nthu.edu.tw/),该网站能够基于用户指定的化合物对药物组合协同效应进行定制预测。