Suppr超能文献

使用多源信息融合框架对协同药物组合进行准确预测。

Accurate prediction of synergistic drug combination using a multi-source information fusion framework.

作者信息

Jin Shuting, Long Huaze, Huang Anqi, Wang Jianming, Yu Xuan, Xu Zhiwei, Xu Junlin

机构信息

School of Computer Science and Technology, Wuhan University of Science and Technology, Wuhan, 430065, Hubei, China.

Hubei Province Key Laboratory of Intelligent Information Processing and Real-time Industrial System, Wuhan, 430065, Hubei, China.

出版信息

BMC Biol. 2025 Jul 3;23(1):200. doi: 10.1186/s12915-025-02302-y.

Abstract

BACKGROUND

Accurately predicting synergistic drug combinations is critical for complex disease therapy. However, the vast search space of potential drug combinations poses significant challenges for identification through biological experiments alone. Nowadays, deep learning is widely applied in this field. However, most methods overlook the important role of protein-protein interaction networks formed by gene expression products and the pharmacophore information of drugs in predicting drug synergy.

RESULTS

We propose MultiSyn, a multi-source information integration method for the accurate prediction of synergistic drug combinations. Specifically, we design a semi-supervised learning framework using an attributed graph neural network to integrate protein-protein interaction networks of gene expression products with multi-omics data, constructing initial cell line representations that incorporate multi-source information. Furthermore, we refine the initial cell line representation by adaptively integrating it with normalized gene expression profiles, enabling the extraction of cell line features that encapsulate global information. In addition, we decompose drugs into fragments containing pharmacophore information based on chemical reaction rules and construct a heterogeneous graph comprising atomic and fragment nodes. To enhance the capture of molecular structural information, we introduce a heterogeneous graph transformer to learn multi-view representations of heterogeneous molecular graphs. Extensive experiments show that MultiSyn outperforms several classical and state-of-the-art baselines in synergistic drug combination prediction tasks.

CONCLUSIONS

This study provides a powerful tool for inferring promising synergistic drug combinations. By leveraging attention mechanisms and pharmacophore information, MultiSyn identifies key substructures that are critical for synergy. Further visualization and case studies validate its effectiveness in capturing biologically meaningful features and identifying potential drug combinations.

摘要

背景

准确预测协同药物组合对于复杂疾病治疗至关重要。然而,潜在药物组合的巨大搜索空间仅通过生物学实验进行识别带来了重大挑战。如今,深度学习在该领域得到了广泛应用。然而,大多数方法忽视了由基因表达产物形成的蛋白质-蛋白质相互作用网络以及药物的药效团信息在预测药物协同作用中的重要作用。

结果

我们提出了MultiSyn,一种用于准确预测协同药物组合的多源信息整合方法。具体而言,我们设计了一个半监督学习框架,使用属性图神经网络将基因表达产物的蛋白质-蛋白质相互作用网络与多组学数据整合,构建包含多源信息的初始细胞系表示。此外,我们通过将初始细胞系表示与归一化基因表达谱自适应整合来对其进行细化,从而能够提取封装全局信息的细胞系特征。另外,我们根据化学反应规则将药物分解为包含药效团信息的片段,并构建一个由原子和片段节点组成的异构图。为了增强对分子结构信息的捕捉,我们引入了异构图变换器来学习异质分子图的多视图表示。大量实验表明,MultiSyn在协同药物组合预测任务中优于多个经典和最新的基线方法。

结论

本研究为推断有前景的协同药物组合提供了一个强大的工具。通过利用注意力机制和药效团信息,MultiSyn识别出对协同作用至关重要的关键子结构。进一步的可视化和案例研究验证了其在捕捉生物学上有意义的特征和识别潜在药物组合方面的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ba97/12226924/e8ddd470ca65/12915_2025_2302_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验