Suppr超能文献

磁控溅射前后陶瓷靶材的定量扫描电子显微镜表征:以铝锌氧化物为例

Quantitative SEM characterisation of ceramic target prior and after magnetron sputtering: a case study of aluminium zinc oxide.

作者信息

Jahangiri Ali Reza, Rajabi Kalvani Payam, Shapouri Samaneh, Sari Amirhossein, ŢĂlu Ştefan, Jalili Yousef Seyed

机构信息

NanoLund, Lund University, Box 118, 22100, Lund, Sweden.

Department of Physics, Faculty of Science, Science and Research Branch, Islamic Azad University, Tehran, Iran.

出版信息

J Microsc. 2021 Mar;281(3):190-201. doi: 10.1111/jmi.12961. Epub 2020 Sep 28.

Abstract

Till now electron microscopy techniques have not been used to evaluate the plasma-target interactions undergone during the magnetron sputtering process. The destructive nature of this interaction severely alters the target microstructure. Utilising quantitative microscopy techniques can shed light on the complex plasma and solid-state processes involved which can ultimately lead to improved functional thin film deposition. As a representative functional material, aluminium-doped-zinc oxide (AZO) is an upcoming alternative to conventional transparent electrode wherein the process optimisation is of great importance. In this paper, we evaluate the pre- and post-sputter field emission scanning electron microscopy (FESEM) data for ceramic AZO target fabricated at three final sintering temperatures (1100°C, 1200°C and 1300°C). In all cases, grain boundaries are merged in addition to a visible reduction in the secondary phases which makes segmentation-based image analysis challenging. Through surface statistics (i.e. fractal dimension, autocorrelation length, texture aspect ratio and entropy) as a function of magnification we can quantify the electron microscopy image of the microstructure. We show that the plasma-microstructure interaction leads to an increase in autocorrelation length, texture aspect ratio and entropy for the optimum AZO ceramic sputtering target sintered at 1200°C. Furthermore, a maximum reduction in fractal dimension span (as determined by exponential regression) is also observed for 1200°C. In addition to the evaluation of plasma effects on sintering, our approach can provide a window towards understanding the underlying thin film growth mechanisms. We believe that this technique can be applied to the defect characterisation of a wide range of polycrystalline ceramic sputtering targets (e.g. ITO, CZTS, GAZO and so on) with the ultimate goal of improving the magnetron sputtering process and the resulting functional thin film. LAY DESCRIPTION: Magnetron sputtering allows scientists to make functional thin films on the order of the nanoscale. In this technique, atoms are plucked from a 'target' then placed onto a substrate forming a thin nanometric film: all thanks to magnets, a special power supply and the fourth state of matter (plasma). Understanding what is going on and how to make a 'good' thin film is important for making better light emitting diodes, solar cells and light sensors. Scientists use electron microscopy to see what is going on in the microstructure of the sputtered thin films to fine tune the sputtering recipe. Here, for the first time, we have applied electron microscopy to see the surface of the microstructure before and after magnetron sputtering. This will help us understanding the plasma-microstructure interaction allowing us to make more informed decisions when fine-tuning the sputtering process to get improved thin films. This is a case study of aluminium-doped zinc oxide (AZO) target that could potentially replace indium tin oxide (ITO), which is widely used as a transparent electrode in devices involving light and electricity. In this case, improved characteristics would be lower electrical resistivity and higher transmission of light. We show that it is possible to use a mathematical description (e.g. the fractal dimension) of the scanning electron microscopy picture to show a link between the target surface and the functional properties. Simple explanation of fractal dimensions by Sixty Symbols ○ https://www.youtube.com/watch?v=cmBljeC79Ls Experimental demonstration of magnetron sputtering by The Thought Emporium ○ https://www.youtube.com/watch?v=Cyu7etM-0Ko Introductory video on magnetron sputtering by Applied Science ○ https://www.youtube.com/watch?v=9OEz_e9C4KM Demonstration of AZO target fabrication and sputtering by Pradhyut Rajjkumar ○ https://www.youtube.com/watch?v=kTLaTJfNX3c Simple explanation of a DIY SEM by Applied Science ○ https://www.youtube.com/watch?v=VdjYVF4a6iU.

摘要

到目前为止,电子显微镜技术尚未用于评估磁控溅射过程中发生的等离子体与靶材的相互作用。这种相互作用的破坏性本质会严重改变靶材的微观结构。利用定量显微镜技术可以揭示其中涉及的复杂等离子体和固态过程,最终有助于改进功能薄膜的沉积。作为一种代表性的功能材料,铝掺杂氧化锌(AZO)是传统透明电极的一种新兴替代材料,其工艺优化至关重要。在本文中,我们评估了在三个最终烧结温度(1100°C、1200°C和1300°C)下制备的陶瓷AZO靶材溅射前后的场发射扫描电子显微镜(FESEM)数据。在所有情况下,除了第二相明显减少外,晶界也发生了合并,这使得基于分割的图像分析具有挑战性。通过将表面统计量(即分形维数、自相关长度、纹理长宽比和熵)作为放大倍数的函数,我们可以量化微观结构的电子显微镜图像。我们表明,对于在1200°C烧结的最佳AZO陶瓷溅射靶材,等离子体与微观结构的相互作用导致自相关长度、纹理长宽比和熵增加。此外,在1200°C时还观察到分形维数跨度(由指数回归确定)的最大减小。除了评估等离子体对烧结的影响外,我们的方法还可以为理解潜在的薄膜生长机制提供一个窗口。我们相信,这种技术可以应用于各种多晶陶瓷溅射靶材(如ITO、CZTS、GAZO等)的缺陷表征,最终目标是改进磁控溅射工艺和所得的功能薄膜。通俗描述:磁控溅射使科学家能够制造纳米级的功能薄膜。在这项技术中,可以从“靶材”中提取原子,然后将其放置在基板上形成纳米级薄膜,这一切都得益于磁体、特殊电源和物质的第四态(等离子体)。了解其中的过程以及如何制造出“优质”薄膜对于制造更好的发光二极管、太阳能电池和光传感器至关重要。科学家利用电子显微镜观察溅射薄膜微观结构中发生的情况,以微调溅射工艺。在这里,我们首次应用电子显微镜观察磁控溅射前后微观结构的表面。这将有助于我们理解等离子体与微观结构的相互作用,使我们在微调溅射工艺以获得更好的薄膜时能够做出更明智的决策。这是一个关于铝掺杂氧化锌(AZO)靶材的案例研究,该靶材有可能替代氧化铟锡(ITO),ITO在涉及光和电的器件中广泛用作透明电极。在这种情况下,改进的特性将是更低的电阻率和更高的光透射率。我们表明,可以使用扫描电子显微镜图像的数学描述(例如分形维数)来显示靶材表面与功能特性之间的联系。六十符号对分形维数的简单解释 ○ https://www.youtube.com/watch?v=cmBljeC79Ls 思想商场对磁控溅射的实验演示 ○ https://www.youtube.com/watch?v=Cyu7etM-0Ko 应用科学关于磁控溅射的介绍视频 ○ https://www.youtube.com/watch?v=9OEz_e9C4KM 普拉迪尤特·拉杰库马尔对AZO靶材制备和溅射的演示 ○ https://www.youtube.com/watch?v=kTLaTJfNX3c 应用科学对自制扫描电子显微镜的简单解释 ○ https://www.youtube.com/watch?v=VdjYVF4a6iU

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5828/7891359/e1b60737dede/JMI-281-190-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验