Laboratory of Biochemistry, Wageningen University, 6708 WE Wageningen, The Netherlands.
Laboratory of Cell Biology, 6708 PE Wageningen University, Wageningen, The Netherlands.
Proc Natl Acad Sci U S A. 2020 Sep 29;117(39):24557-24566. doi: 10.1073/pnas.2009554117. Epub 2020 Sep 14.
The hormone auxin controls many aspects of the plant life cycle by regulating the expression of thousands of genes. The transcriptional output of the nuclear auxin signaling pathway is determined by the activity of AUXIN RESPONSE transcription FACTORs (ARFs), through their binding to -regulatory elements in auxin-responsive genes. Crystal structures, in vitro, and heterologous studies have fueled a model in which ARF dimers bind with high affinity to distinctly spaced repeats of canonical AuxRE motifs. However, the relevance of this "caliper" model, and the mechanisms underlying the binding affinities in vivo, have remained elusive. Here we biochemically and functionally interrogate modes of ARF-DNA interaction. We show that a single additional hydrogen bond in ARF1 confers high-affinity binding to individual DNA sites. We demonstrate the importance of AuxRE cooperativity within repeats in the and promoters in vivo. Meta-analysis of transcriptomes further reveals strong genome-wide association of auxin response with both inverted (IR) and direct (DR) AuxRE repeats, which we experimentally validated. The association of these elements with auxin-induced up-regulation (DR and IR) or down-regulation (IR) was correlated with differential binding affinities of A-class and B-class ARFs, respectively, suggesting a mechanistic basis for the distinct activity of these repeats. Our results support the relevance of high-affinity binding of ARF transcription factors to uniquely spaced DNA elements in vivo, and suggest that differential binding affinities of ARF subfamilies underlie diversity in element function.
激素生长素通过调节数千个基因的表达来控制植物生命周期的许多方面。核生长素信号通路的转录输出是由 AUXIN RESPONSE 转录因子(ARFs)的活性决定的,通过它们与生长素反应基因中的 - 调节元件结合。晶体结构、体外和异源研究为模型提供了动力,该模型认为 ARF 二聚体以高亲和力结合到经典 AuxRE 基序的明显间隔重复上。然而,这种“卡尺”模型的相关性以及体内结合亲和力的机制仍然难以捉摸。在这里,我们从生化和功能上研究了 ARF-DNA 相互作用的模式。我们表明,在 ARF1 中增加一个额外的氢键赋予了其与单个 DNA 位点的高亲和力结合。我们证明了 AuxRE 重复内的协同作用在体内 和 启动子中的重要性。对转录组的荟萃分析进一步揭示了生长素反应与反向(IR)和直接(DR)AuxRE 重复之间的强烈全基因组关联,我们通过实验验证了这一点。这些元件与生长素诱导的上调(DR 和 IR)或下调(IR)的关联与 A 类和 B 类 ARF 的差异结合亲和力相关,这表明这些重复的不同活性具有机制基础。我们的结果支持了 ARF 转录因子在体内与独特间隔的 DNA 元件的高亲和力结合的相关性,并表明 ARF 亚家族的差异结合亲和力是元件功能多样性的基础。