Suppr超能文献

氨基酸位点进化中的衰老和僵化。

Senescence and entrenchment in evolution of amino acid sites.

机构信息

Center of Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo, 143028, Russia.

Institute for Information Transmission Problems (Kharkevich Institute), Russian Academy of Sciences, Moscow, 127051, Russia.

出版信息

Nat Commun. 2020 Sep 14;11(1):4603. doi: 10.1038/s41467-020-18366-z.

Abstract

Amino acid propensities at a site change in the course of protein evolution. This may happen for two reasons. Changes may be triggered by substitutions at epistatically interacting sites elsewhere in the genome. Alternatively, they may arise due to environmental changes that are external to the genome. Here, we design a framework for distinguishing between these alternatives. Using analytical modelling and simulations, we show that they cause opposite dynamics of the fitness of the allele currently occupying the site: it tends to increase with the time since its origin due to epistasis ("entrenchment"), but to decrease due to random environmental fluctuations ("senescence"). By analysing the genomes of vertebrates and insects, we show that the amino acids originating at negatively selected sites experience strong entrenchment. By contrast, the amino acids originating at positively selected sites experience senescence. We propose that senescence of the current allele is a cause of adaptive evolution.

摘要

在蛋白质进化过程中,某个位置的氨基酸倾向性会发生变化。这可能有两个原因。变化可能是由基因组中其他上位相互作用位点的取代引发的。或者,它们可能是由于基因组外部的环境变化而产生的。在这里,我们设计了一个框架来区分这些替代方案。通过分析建模和模拟,我们表明它们导致了当前占据该位置的等位基因的适应性的相反动态:由于上位性(“根深蒂固”),它随着起源以来的时间而增加,但由于随机环境波动而减少(“衰老”)。通过分析脊椎动物和昆虫的基因组,我们发现负选择位点起源的氨基酸经历强烈的根深蒂固。相比之下,正选择位点起源的氨基酸经历衰老。我们提出,当前等位基因的衰老可能是适应性进化的原因。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d6b1/7490271/e6fbd705b98e/41467_2020_18366_Fig1_HTML.jpg

相似文献

1
Senescence and entrenchment in evolution of amino acid sites.
Nat Commun. 2020 Sep 14;11(1):4603. doi: 10.1038/s41467-020-18366-z.
2
Fitness conferred by replaced amino acids declines with time.
Biol Lett. 2012 Oct 23;8(5):825-8. doi: 10.1098/rsbl.2012.0356. Epub 2012 May 23.
3
Evolution of Amino Acid Propensities under Stability-Mediated Epistasis.
Mol Biol Evol. 2022 Mar 2;39(3). doi: 10.1093/molbev/msac030.
4
Episodic evolution of coadapted sets of amino acid sites in mitochondrial proteins.
PLoS Genet. 2021 Jan 25;17(1):e1008711. doi: 10.1371/journal.pgen.1008711. eCollection 2021 Jan.
5
Allele-specific nonstationarity in evolution of influenza A virus surface proteins.
Proc Natl Acad Sci U S A. 2019 Oct 15;116(42):21104-21112. doi: 10.1073/pnas.1904246116. Epub 2019 Oct 2.
6
Parallel Evolution of Metazoan Mitochondrial Proteins.
Genome Biol Evol. 2017 May 1;9(5):1341-1350. doi: 10.1093/gbe/evx025.
7
Detecting Adaptation in Protein-Coding Genes Using a Bayesian Site-Heterogeneous Mutation-Selection Codon Substitution Model.
Mol Biol Evol. 2017 Jan;34(1):204-214. doi: 10.1093/molbev/msw220. Epub 2016 Oct 15.
8
Epistasis and the Dynamics of Reversion in Molecular Evolution.
Genetics. 2016 Jul;203(3):1335-51. doi: 10.1534/genetics.116.188961. Epub 2016 May 18.
10
Nonadaptive Amino Acid Convergence Rates Decrease over Time.
Mol Biol Evol. 2015 Jun;32(6):1373-81. doi: 10.1093/molbev/msv041. Epub 2015 Mar 3.

引用本文的文献

2
SURFS and AlphaFold Reveal Ribosome Footprint Shift Caused by EF-Tu D81 Mutation.
bioRxiv. 2025 Jun 7:2025.06.05.657321. doi: 10.1101/2025.06.05.657321.
3
Estimating the proportion of beneficial mutations that are not adaptive in mammals.
PLoS Genet. 2024 Dec 26;20(12):e1011536. doi: 10.1371/journal.pgen.1011536. eCollection 2024 Dec.
4
Evolution of Amino Acid Propensities under Stability-Mediated Epistasis.
Mol Biol Evol. 2022 Mar 2;39(3). doi: 10.1093/molbev/msac030.
5
Shifts in amino acid preferences as proteins evolve: A synthesis of experimental and theoretical work.
Protein Sci. 2021 Oct;30(10):2009-2028. doi: 10.1002/pro.4161. Epub 2021 Aug 12.
6
SELVa: Simulator of evolution with landscape variation.
PLoS One. 2020 Dec 2;15(12):e0242225. doi: 10.1371/journal.pone.0242225. eCollection 2020.

本文引用的文献

1
SELVa: Simulator of evolution with landscape variation.
PLoS One. 2020 Dec 2;15(12):e0242225. doi: 10.1371/journal.pone.0242225. eCollection 2020.
2
Allele-specific nonstationarity in evolution of influenza A virus surface proteins.
Proc Natl Acad Sci U S A. 2019 Oct 15;116(42):21104-21112. doi: 10.1073/pnas.1904246116. Epub 2019 Oct 2.
3
Evolution in the light of fitness landscape theory.
Trends Ecol Evol. 2019 Jan;34(1):69-82. doi: 10.1016/j.tree.2018.10.009. Epub 2018 Dec 21.
4
Evolutionary constraints in fitness landscapes.
Heredity (Edinb). 2018 Nov;121(5):466-481. doi: 10.1038/s41437-018-0110-1. Epub 2018 Jul 11.
6
Sequence entropy of folding and the absolute rate of amino acid substitutions.
Nat Ecol Evol. 2017 Dec;1(12):1923-1930. doi: 10.1038/s41559-017-0338-9. Epub 2017 Oct 23.
7
Evolution of complex adaptations in molecular systems.
Nat Ecol Evol. 2017 Aug;1(8):1084-1092. doi: 10.1038/s41559-017-0228-1. Epub 2017 Jul 21.
8
Parallel Evolution of Metazoan Mitochondrial Proteins.
Genome Biol Evol. 2017 May 1;9(5):1341-1350. doi: 10.1093/gbe/evx025.
9
Epistasis and the Dynamics of Reversion in Molecular Evolution.
Genetics. 2016 Jul;203(3):1335-51. doi: 10.1534/genetics.116.188961. Epub 2016 May 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验