Suppr超能文献

不断变化的偏好:单一位点氨基酸适应度景观的变形与蛋白质的进化

Changing preferences: deformation of single position amino acid fitness landscapes and evolution of proteins.

作者信息

Bazykin Georgii A

机构信息

Institute for Information Transmission Problems (Kharkevich Institute) of the Russian Academy of Sciences, Moscow 127051, Russia Faculty of Bioengineering and Bioinformatics and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia Pirogov Russian National Research Medical University, Moscow 117997, Russia

出版信息

Biol Lett. 2015 Oct;11(10). doi: 10.1098/rsbl.2015.0315.

Abstract

The fitness landscape-the function that relates genotypes to fitness-and its role in directing evolution are a central object of evolutionary biology. However, its huge dimensionality precludes understanding of even the basic aspects of its shape. One way to approach it is to ask a simpler question: what are the properties of a function that assigns fitness to each possible variant at just one particular site-a single position fitness landscape-and how does it change in the course of evolution? Analyses of genomic data from multiple species and multiple individuals within a species have proved beyond reasonable doubt that fitness functions of positions throughout the genome do themselves change with time, thus shaping protein evolution. Here, I will briefly review the literature that addresses these dynamics, focusing on recent genome-scale analyses of fitness functions of amino acid sites, i.e. vectors of fitnesses of 20 individual amino acid variants at a given position of a protein. The set of amino acids that confer high fitness at a particular position changes with time, and the rate of this change is comparable with the rate at which a position evolves, implying that this process plays a major role in evolutionary dynamics. However, the causes of these changes remain largely unclear.

摘要

适应度景观——将基因型与适应度联系起来的函数——及其在引导进化过程中的作用是进化生物学的核心研究对象。然而,其巨大的维度使得人们甚至难以理解其形状的基本方面。一种解决方法是提出一个更简单的问题:为一个特定位点(即单一位点适应度景观)的每个可能变体赋予适应度的函数有哪些属性,以及它在进化过程中如何变化?对来自多个物种以及同一物种内多个个体的基因组数据的分析已经确凿无疑地证明,整个基因组中各位点的适应度函数本身会随时间变化,从而塑造了蛋白质进化。在此,我将简要回顾涉及这些动态变化的文献,重点关注近期对氨基酸位点适应度函数的全基因组规模分析,即在蛋白质特定位置上20种单个氨基酸变体的适应度向量。在特定位置赋予高适应度的氨基酸集合随时间变化,且这种变化的速率与一个位点的进化速率相当,这意味着该过程在进化动态中起主要作用。然而,这些变化的原因在很大程度上仍不清楚。

相似文献

2
A systematic survey of an intragenic epistatic landscape.基因内上位性景观的系统调查。
Mol Biol Evol. 2015 Jan;32(1):229-38. doi: 10.1093/molbev/msu301. Epub 2014 Nov 3.
4
Inferring fitness landscapes by regression produces biased estimates of epistasis.通过回归推断适应度景观会产生偏倚的上位性估计。
Proc Natl Acad Sci U S A. 2014 Jun 3;111(22):E2301-9. doi: 10.1073/pnas.1400849111. Epub 2014 May 19.
5
Evolution in the light of fitness landscape theory.适应度景观理论视角下的进化。
Trends Ecol Evol. 2019 Jan;34(1):69-82. doi: 10.1016/j.tree.2018.10.009. Epub 2018 Dec 21.
7
Parallel Evolution of Metazoan Mitochondrial Proteins.后生动物线粒体蛋白质的平行进化
Genome Biol Evol. 2017 May 1;9(5):1341-1350. doi: 10.1093/gbe/evx025.
8
Dynamic landscapes: a model of context and contingency in evolution.动态景观:进化中语境和偶发事件的模型。
J Theor Biol. 2013 Oct 7;334:162-72. doi: 10.1016/j.jtbi.2013.05.030. Epub 2013 Jun 22.
10
Detecting epistasis from an ensemble of adapting populations.从一组适应性群体中检测上位性。
Evolution. 2015 Sep;69(9):2359-70. doi: 10.1111/evo.12735. Epub 2015 Aug 20.

引用本文的文献

3
Phylogenetic inference of changes in amino acid propensities with single-position resolution.解析氨基酸倾向性变化的系统发育推断。
PLoS Comput Biol. 2022 Feb 18;18(2):e1009878. doi: 10.1371/journal.pcbi.1009878. eCollection 2022 Feb.
6
SELVa: Simulator of evolution with landscape variation.SELVa:具有景观变化的进化模拟器。
PLoS One. 2020 Dec 2;15(12):e0242225. doi: 10.1371/journal.pone.0242225. eCollection 2020.
9

本文引用的文献

1
Coordinated Evolution of Influenza A Surface Proteins.甲型流感病毒表面蛋白的协同进化
PLoS Genet. 2015 Aug 6;11(8):e1005404. doi: 10.1371/journal.pgen.1005404. eCollection 2015 Aug.
2
Nonadaptive Amino Acid Convergence Rates Decrease over Time.非适应性氨基酸趋同率随时间下降。
Mol Biol Evol. 2015 Jun;32(6):1373-81. doi: 10.1093/molbev/msv041. Epub 2015 Mar 3.
5
Topological features of rugged fitness landscapes in sequence space.序列空间中崎岖适应景观的拓扑特征。
Trends Genet. 2015 Jan;31(1):24-33. doi: 10.1016/j.tig.2014.09.009. Epub 2014 Oct 15.
8
A structural perspective of compensatory evolution.补偿性进化的结构视角。
Curr Opin Struct Biol. 2014 Jun;26(100):104-12. doi: 10.1016/j.sbi.2014.05.004. Epub 2014 Jun 28.
9
Empirical fitness landscapes and the predictability of evolution.经验性适应景观与进化的可预测性。
Nat Rev Genet. 2014 Jul;15(7):480-90. doi: 10.1038/nrg3744. Epub 2014 Jun 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验