Zeng Yi, Johnson Jordan, Xu Shoujun, Wang Yuhong
Department of Chemistry, University of Houston, Houston, TX 77204, USA.
Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA.
bioRxiv. 2025 Jun 7:2025.06.05.657321. doi: 10.1101/2025.06.05.657321.
Protein synthesis relies on accurate mRNA decoding by tRNA, a process guided by EF-Tu. We investigated how mutations at a conserved residue, aspartate 81, affect EF-Tu function using GTPase assays, AlphaFold modeling, and quantum-sensing-based super-resolution force spectroscopy (SURFS). All D81 variants retained GTPase activity but impaired tRNA release, revealed by sub-nucleotide ribosome footprinting. AlphaFold3 modeling suggests that D81 mutations disrupt magnesium coordination and interaction with the sarcin-ricin loop in the GTP-bound state. AlphaFold2-based sequence-structure analysis indicates that D81 anchors coevolutionary constraints, and its mutation enables cryptic structural variation. These results show how a single conserved residue links catalytic coordination, allosteric communication, and evolutionary constraint, offering mechanistic insight into translation fidelity and demonstrating the utility of an unconventional force spectroscopy in probing ribosome dynamics.
蛋白质合成依赖于tRNA对mRNA的精确解码,这一过程由EF-Tu引导。我们使用GTPase分析、AlphaFold建模和基于量子传感的超分辨率力谱(SURFS),研究了保守残基天冬氨酸81处的突变如何影响EF-Tu的功能。所有D81变体都保留了GTPase活性,但亚核苷酸核糖体足迹分析显示,它们损害了tRNA的释放。AlphaFold3建模表明,D81突变破坏了GTP结合状态下的镁配位以及与肌动蛋白-蓖麻毒素环的相互作用。基于AlphaFold2的序列-结构分析表明,D81锚定了协同进化限制,其突变会导致隐秘的结构变异。这些结果展示了单个保守残基如何连接催化配位、变构通讯和进化限制,为翻译保真度提供了机制性见解,并证明了一种非常规力谱在探测核糖体动力学方面的实用性。