Suppr超能文献

癌网络分析的癌蛋白特异性分子相互作用图谱(SigMaps)。

Oncoprotein-specific molecular interaction maps (SigMaps) for cancer network analyses.

机构信息

Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA.

Division of Pediatric Hematology/Oncology, Department of Pediatrics, UCSF Benioff Children's Hospital, San Francisco, CA, USA.

出版信息

Nat Biotechnol. 2021 Feb;39(2):215-224. doi: 10.1038/s41587-020-0652-7. Epub 2020 Sep 14.

Abstract

Tumor-specific elucidation of physical and functional oncoprotein interactions could improve tumorigenic mechanism characterization and therapeutic response prediction. Current interaction models and pathways, however, lack context specificity and are not oncoprotein specific. We introduce SigMaps as context-specific networks, comprising modulators, effectors and cognate binding-partners of a specific oncoprotein. SigMaps are reconstructed de novo by integrating diverse evidence sources-including protein structure, gene expression and mutational profiles-via the OncoSig machine learning framework. We first generated a KRAS-specific SigMap for lung adenocarcinoma, which recapitulated published KRAS biology, identified novel synthetic lethal proteins that were experimentally validated in three-dimensional spheroid models and established uncharacterized crosstalk with RAB/RHO. To show that OncoSig is generalizable, we first inferred SigMaps for the ten most mutated human oncoproteins and then for the full repertoire of 715 proteins in the COSMIC Cancer Gene Census. Taken together, these SigMaps show that the cell's regulatory and signaling architecture is highly tissue specific.

摘要

肿瘤特异性阐明物理和功能致癌蛋白相互作用可以提高肿瘤发生机制的特征描述和治疗反应预测。然而,当前的相互作用模型和途径缺乏上下文特异性,并且不是致癌蛋白特异性的。我们引入 SigMaps 作为具有上下文特异性的网络,包括特定致癌蛋白的调节剂、效应物和同源结合伙伴。SigMaps 通过 OncoSig 机器学习框架整合多种证据来源(包括蛋白质结构、基因表达和突变谱)从头重建。我们首先为肺腺癌生成了一个 KRAS 特异性 SigMap,该图谱重现了已发表的 KRAS 生物学,鉴定了新的合成致死蛋白,并在三维球体模型中进行了实验验证,并与 RAB/RHO 建立了未表征的串扰。为了表明 OncoSig 具有通用性,我们首先推断了十个最常见突变的人类致癌蛋白的 SigMap,然后推断了 COSMIC 癌症基因目录中 715 个蛋白质的全部谱。总的来说,这些 SigMaps 表明细胞的调节和信号转导架构具有高度的组织特异性。

相似文献

2
Exploiting the intrinsic misfolding propensity of the KRAS oncoprotein.利用 KRAS 癌蛋白的固有错误折叠倾向。
Proc Natl Acad Sci U S A. 2023 Feb 28;120(9):e2214921120. doi: 10.1073/pnas.2214921120. Epub 2023 Feb 22.
5
Synthetic Lethal Vulnerabilities in -Mutant Cancers.- 突变癌症中的合成致死脆弱性。
Cold Spring Harb Perspect Med. 2018 Aug 1;8(8):a031518. doi: 10.1101/cshperspect.a031518.
6
How do oncoprotein mutations rewire protein-protein interaction networks?癌蛋白突变如何重塑蛋白质-蛋白质相互作用网络?
Expert Rev Proteomics. 2015;12(5):449-55. doi: 10.1586/14789450.2015.1084875. Epub 2015 Sep 1.

引用本文的文献

9
The application of patient-derived organoid in the research of lung cancer.患者来源类器官在肺癌研究中的应用。
Cell Oncol (Dordr). 2023 Jun;46(3):503-519. doi: 10.1007/s13402-023-00771-3. Epub 2023 Jan 25.

本文引用的文献

4
COSMIC: the Catalogue Of Somatic Mutations In Cancer.COSMIC:癌症体细胞突变目录。
Nucleic Acids Res. 2019 Jan 8;47(D1):D941-D947. doi: 10.1093/nar/gky1015.
5
Double duty: ZMYND8 in the DNA damage response and cancer.双重职责:ZMYND8 在 DNA 损伤反应和癌症中的作用。
Cell Cycle. 2018;17(4):414-420. doi: 10.1080/15384101.2017.1376150. Epub 2018 Mar 19.
6
Synthetic Lethal Vulnerabilities in -Mutant Cancers.- 突变癌症中的合成致死脆弱性。
Cold Spring Harb Perspect Med. 2018 Aug 1;8(8):a031518. doi: 10.1101/cshperspect.a031518.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验