Shiri Isaac, Maleki Hasan, Hajianfar Ghasem, Abdollahi Hamid, Ashrafinia Saeed, Hatt Mathieu, Zaidi Habib, Oveisi Mehrdad, Rahmim Arman
Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211, Geneva 4, Switzerland.
Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Science, Tehran, Iran.
Mol Imaging Biol. 2020 Aug;22(4):1132-1148. doi: 10.1007/s11307-020-01487-8.
Considerable progress has been made in the assessment and management of non-small cell lung cancer (NSCLC) patients based on mutation status in the epidermal growth factor receptor (EGFR) and Kirsten rat sarcoma viral oncogene (KRAS). At the same time, NSCLC management through KRAS and EGFR mutation profiling faces challenges. In the present work, we aimed to evaluate a comprehensive radiomics framework that enabled prediction of EGFR and KRAS mutation status in NSCLC patients based on radiomic features from low-dose computed tomography (CT), contrast-enhanced diagnostic quality CT (CTD), and positron emission tomography (PET) imaging modalities and use of machine learning algorithms.
Our study involved NSCLC patients including 150 PET, low-dose CT, and CTD images. Radiomic features from original and preprocessed (including 64 bin discretizing, Laplacian-of-Gaussian (LOG), and Wavelet) images were extracted. Conventional clinically used standard uptake value (SUV) parameters and metabolic tumor volume (MTV) were also obtained from PET images. Highly correlated features were pre-eliminated, and false discovery rate (FDR) correction was performed with the resulting q-values reported for univariate analysis. Six feature selection methods and 12 classifiers were then used for multivariate prediction of gene mutation status (provided by polymerase chain reaction (PCR)) in patients. We performed 10-fold cross-validation for model tuning to improve robustness, and our developed models were assessed on an independent validation set with 68 patients (common in all three imaging modalities). The average area under the receiver operator characteristic curve (AUC) was utilized for performance evaluation.
The best predictive power for conventional PET parameters was achieved by SUV (AUC 0.69, p value = 0.0002) and MTV (AUC 0.55, p value = 0.0011) for EGFR and KRAS, respectively. Univariate analysis of extracted radiomics features improved AUC performance to 0.75 (q-value 0.003, Short-Run Emphasis feature of GLRLM from LOG preprocessed image of PET with sigma value 1.5) and 0.71 (q-value 0.00005, Large Dependence Low Gray-Level Emphasis feature of GLDM in LOG preprocessed image of CTD with sigma value 5) for EGFR and KRAS, respectively. Furthermore, multivariate machine learning-based AUC performances were significantly improved to 0.82 for EGFR (LOG preprocessed image of PET with sigma 3 with variance threshold (VT) feature selector and stochastic gradient descent (SGD) classifier (q-value = 4.86E-05) and 0.83 for KRAS (LOG preprocessed image of CT with sigma 3.5 with select model (SM) feature selector and SGD classifier (q-value = 2.81E-09).
Our work demonstrated that non-invasive and reliable radiomics analysis can be successfully used to predict EGFR and KRAS mutation status in NSCLC patients. We demonstrated that radiomic features extracted from different image-feature sets could be used for EGFR and KRAS mutation status prediction in NSCLC patients and showed improved predictive power relative to conventional image-derived metrics.
基于表皮生长因子受体(EGFR)和 Kirsten 大鼠肉瘤病毒致癌基因(KRAS)的突变状态,非小细胞肺癌(NSCLC)患者的评估和管理已取得显著进展。与此同时,通过 KRAS 和 EGFR 突变分析进行 NSCLC 管理面临挑战。在本研究中,我们旨在评估一个综合的放射组学框架,该框架能够基于低剂量计算机断层扫描(CT)、对比增强诊断质量 CT(CTD)和正电子发射断层扫描(PET)成像模态的放射组学特征以及机器学习算法的使用,预测 NSCLC 患者的 EGFR 和 KRAS 突变状态。
我们的研究纳入了 NSCLC 患者,包括 150 例 PET、低剂量 CT 和 CTD 图像。从原始图像和预处理图像(包括 64 位离散化、高斯-拉普拉斯(LOG)和小波)中提取放射组学特征。还从 PET 图像中获取了传统临床使用的标准摄取值(SUV)参数和代谢肿瘤体积(MTV)。预先消除高度相关的特征,并对单变量分析报告的结果 q 值进行错误发现率(FDR)校正。然后使用六种特征选择方法和 12 种分类器对患者的基因突变状态(由聚合酶链反应(PCR)提供)进行多变量预测。我们进行了 10 折交叉验证以调整模型以提高稳健性,并在一个包含 68 例患者(在所有三种成像模态中均常见)的独立验证集上评估我们开发的模型。利用受试者操作特征曲线(AUC)下的平均面积进行性能评估。
对于 EGFR 和 KRAS,传统 PET 参数的最佳预测能力分别通过 SUV(AUC 0.69,p 值 = 0.0002)和 MTV(AUC 0.55,p 值 = 0.0011)实现。对提取的放射组学特征进行单变量分析,将 EGFR 和 KRAS 的 AUC 性能分别提高到 0.75(q 值 0.003,PET 的 LOG 预处理图像中 sigma 值为 1.5 的 GLRLM 的短期强调特征)和 0.71(q 值 0.00005,CTD 的 LOG 预处理图像中 sigma 值为 5 的 GLDM 的大依赖性低灰度级强调特征)。此外,基于多变量机器学习的 AUC 性能对于 EGFR 显著提高到 0.82(PET 的 sigma 为 3 且具有方差阈值(VT)特征选择器和随机梯度下降(SGD)分类器的 LOG 预处理图像(q 值 = 4.86E - 05),对于 KRAS 提高到 0.83(CT 的 sigma 为 3.5 且具有选择模型(SM)特征选择器和 SGD 分类器的 LOG 预处理图像(q 值 = 2.81E - 09)。
我们的研究表明,非侵入性且可靠的放射组学分析可成功用于预测 NSCLC 患者的 EGFR 和 KRAS 突变状态。我们证明,从不同图像特征集提取的放射组学特征可用于 NSCLC 患者的 EGFR 和 KRAS 突变状态预测,并且相对于传统的图像衍生指标显示出更高的预测能力。